Higher invariants in homotopy theory

37th Annual Meeting of the Irish Mathematical Society

Oisín Flynn-Connolly (Université Sorbonne Paris Nord)

August 30, 2024

→ ∃ →

Motivations

② Classical Massey products

- Motivations
- Classical Massey products
- Interlude: Algebraic operads and Koszul duality

- Motivations
- Classical Massey products
- Interlude: Algebraic operads and Koszul duality
- Massey products for algebras over algebraic operads (jt. with J. Moreno-Fernandez [6])

- Motivations
- Classical Massey products
- Interlude: Algebraic operads and Koszul duality
- Massey products for algebras over algebraic operads (jt. with J. Moreno-Fernandez [6])
- O Applications of cotriple products [5]

Motivations and recollections

Motivation: Distinguishing spaces

Question

When are two topological spaces^a homotopy equivalent?

^alocally compact, Hausdorff with the homotopy type of a CW-complex

Source: reddit.com

37th Annual Meeting of the Irish Mathematic

Higher invariants in homotopy theory

August 30, 2024

4/31

Two continuous maps $f, g: X \to Y$ are homotopic if there is a map $H: X \times I \to Y$ such that $H_0 = f$ and $H_1 = g$

Definition

Let X and Y be spaces. They are homotopy equivalent if there are maps $f: X \to Y$ and $g: Y \to X$ such that $f \circ g$ and $g \circ f$ are homotopic to the identity.

A chain complex over a field is a collection of vector spaces $A^i : i \in \mathbb{Z}$ and maps $d^n : A^n \to A^{n+1}$ such that $d^{n+1} \circ d^n = 0$ for all n.

$$\cdots A^{i} \xrightarrow{d} A^{i+1} \xrightarrow{d} A^{i+2} \xrightarrow{d} A^{i+3} \xrightarrow{d} A^{i+4} \xrightarrow{d} \cdots$$

Definition

A dg-algebra is a chain complex A equipped with a binary associative multiplication $-\cup -: A^p \otimes A^q \to A^{p+q}$ and d is a derivation wrt. \cup

$$d(x \cup y) = d(x) \cup y + (-1)^{|x|} x \cup d(y)$$

A chain complex over a field is a collection of vector spaces $A^i : i \in \mathbb{Z}$ and maps $d^n : A^n \to A^{n+1}$ such that $d^{n+1} \circ d^n = 0$ for all n.

$$\cdots A^{i} \xrightarrow{d} A^{i+1} \xrightarrow{d} A^{i+2} \xrightarrow{d} A^{i+3} \xrightarrow{d} A^{i+4} \xrightarrow{d} \cdots$$

Definition

A dg-algebra is a chain complex A equipped with a binary associative multiplication $-\cup -: A^p \otimes A^q \to A^{p+q}$ and d is a derivation wrt. \cup

$$d(x \cup y) = d(x) \cup y + (-1)^{|x|} x \cup d(y)$$

Example: if you have a smooth manifold M, the de Rham forms $(\Omega^{\bullet}(M), \wedge)$

< 回 > < 三 > < 三 > -

Singular (co)chains

• There is a dg-algebra with Z-coefficients associated to every space¹.

 $C^{i}(X;\mathbb{Z}) = \operatorname{Hom}\left(\{f: \bigtriangleup^{n} \to X; f \text{ continuous function}\}, \mathbb{Z}\right)$

Here, \triangle^n is the *n*-dimensional simplex.

37th

• There is a dg-algebra with \mathbb{Z} -coefficients associated to every space¹.

 $C^{i}(X;\mathbb{Z}) = \operatorname{Hom}\left(\{f: \bigtriangleup^{n} \to X; f \text{ continuous function}\}, \mathbb{Z}\right)$

Here, \triangle^n is the *n*-dimensional simplex.

• The linear dual d_i of the differential d^* is defined on the dual basis takes a function $f : \triangle^n \to X$ to $\sum (-1)^i f_i$ where $f_i : \triangle^{n-1} \to X$ is the *i*th boundary simplex.

 37^{th}

• There is a dg-algebra with \mathbb{Z} -coefficients associated to every space¹.

 $C^{i}(X;\mathbb{Z}) = \operatorname{Hom}\left(\{f: \bigtriangleup^{n} \to X; f \text{ continuous function}\}, \mathbb{Z}\right)$

Here, \triangle^n is the *n*-dimensional simplex.

- The linear dual d_i of the differential d^* is defined on the dual basis takes a function $f : \triangle^n \to X$ to $\sum (-1)^i f_i$ where $f_i : \triangle^{n-1} \to X$ is the *i*th boundary simplex.
- $C^*(X; \Bbbk)$ has multiplication induced by the diagonal map

$$X o X imes X$$

 $x \mapsto (x, x)$

¹of finite type

 37^{th}

The cohomology of a chain complex A is the following set

$$H^i(A) = \ker d^i / \operatorname{Im} d^{i-1}$$

- These inherit the addition from A making them groups.
- If A is a dg-algebra, they inherit the multiplication giving them a ring structure.
- If $A = C^*(X : \mathbb{k})$; this is a commutative ring.

Theorem (Poincaré circa 1900 and Alexander, Čech, Whitney, Eilenberg circa 1950)

Let X and Y be homotopy equivalent spaces. Then they have the same cohomology rings. Homotopic maps have the same induced map on cohomology.

Example

The spaces $\mathbb{C}P^{\infty} \times S^1/\{x_0\} \times S^1$ and $\mathbb{C}P^{\infty} \times S^3$ have the same cohomology ring but are not homotopy equivalent.

Theorem (Poincaré circa 1900 and Alexander, Čech, Whitney, Eilenberg circa 1950)

Let X and Y be homotopy equivalent spaces. Then they have the same cohomology rings. Homotopic maps have the same induced map on cohomology.

Example

The spaces $\mathbb{C}P^{\infty} \times S^1/\{x_0\} \times S^1$ and $\mathbb{C}P^{\infty} \times S^3$ have the same cohomology ring but are not homotopy equivalent.

Motivation: We need stronger invariants

Two dg-(commutative) algebras A, B are weakly homotopy equivalent if they can be linked via a zig-zag of algebras where all the maps are cohomology equivalences.

$A \xrightarrow{\sim} X \xleftarrow{\sim} \dots \xrightarrow{\sim} Y \xleftarrow{\sim} B$

 Work of Quillen/Sullivan/Mandell says that the homotopy type C*(X, R) as an algebra² is³ a complete (weak) homotopy invariant of X.

²actually as a E_{∞} -algebra if you want integral coefficents

³with some caveats on the homotopy type of X

37th Annual Meeting of the Irish Mathematic Higher invariants in homotopy theory

Two dg-(commutative) algebras A, B are weakly homotopy equivalent if they can be linked via a zig-zag of algebras where all the maps are cohomology equivalences.

$A \xrightarrow{\sim} X \xleftarrow{\sim} \dots \xrightarrow{\sim} Y \xleftarrow{\sim} B$

- Work of Quillen/Sullivan/Mandell says that the homotopy type C*(X, R) as an algebra² is³ a complete (weak) homotopy invariant of X.
- Any homotopy invariant of such algebras will be a homotopy invariant of spaces.
- Want to find such invariants.

 2 actually as a $\textit{E}_{\infty}\text{-algebra}$ if you want integral coefficents

³with some caveats on the homotopy type of X

Classical Massey products

Massey triple products

Question (Formality)

When is a dg-algebra equivalent, as an algebra, to its cohomology?

3 N 3

Question (Formality)

When is a dg-algebra equivalent, as an algebra, to its cohomology?

Answer: Obstructions are given by Massey products.

Definition

Let A be a dg-algebra. Let $a, b, c \in H^{\bullet}(A)$ by such that ab = 0 and bc = 0. Let x, y, z be cocycles representing a, b, c and suppose du = xy and dv = yz. Then uz - xv is a cocycle and represents a well-defined class of

$$\frac{H^{|a|+|b|+|c|-1}(A)}{aH^{|b|+|c|-1}(A)+H^{|a|+|b|-1}(A)c}$$

Question (Formality)

When is a dg-algebra equivalent, as an algebra, to its cohomology?

Answer: Obstructions are given by Massey products.

Definition

Let A be a dg-algebra. Let $a, b, c \in H^{\bullet}(A)$ by such that ab = 0 and bc = 0. Let x, y, z be cocycles representing a, b, c and suppose du = xy and dv = yz. Then uz - xv is a cocycle and represents a well-defined class of

$$rac{H^{|a|+|b|+|c|-1}(A)}{aH^{|b|+|c|-1}(A)+H^{|a|+|b|-1}(A)c}$$

Theorem (Massey [7], 1958)

Weakly equivalent associative algebras have the same Massey products.

The geometric picture

Source: Jim.belk; Wikipedia

∋⇒

- The Massey product we gave is a cocycle because A satisfies the associative relation. Algebras that satisfy other relations have Massey products corresponding to those relations. (Muro [9], 2023)
- There are higher order Massey products, defined only when lower order Massey product vanishes. *Spoiler: These will correspond to the syzgyies (relations between relations) of the associative relation.*
- These are defined via a very concrete formula

$$\sum_{0 \le i < k < j \le n} (-1)^{|b_{ik}| + 1} b_{ik} b_{kn}$$

where $d(b_{ik})$ is a (vanishing) Massey product of degree k - i (Massey, 1958)

- Similar invariants were defined for dg-Lie algebras (Alladay [1] Retah [10], 1977)
- There are *matric Massey products* which correspond to more complicated expressions (like ab + cd + ef = 0 for example) in the cohomology ring. (May [8], 1968)
- These can be packaged together as the differentials in the *Eilenberg-Moore spectral sequence* which converges to Tor^A(k, k) from an E²-page of Tor^{H(A)}(k, k).

15/31

It is not enough for this spectral sequence to collapse on E_2 -page ie. for all Massey products to vanish.

Formality turns out to be them vanishing in a *coherent* way.

Theorem (Deligne, Griffiths, Morgan, Sullivan [4])

Let A be a commutative dg-algebra over \mathbb{Q} . Let $\mathfrak{m} = (Sym(\bigoplus_{i=0}^{\infty} V_i), d)$ be the minimal model for A. Then A is formal if and only if, there is in each V_i a complement B_i to the cocycles Z_i , $V_i = Z_i \oplus B_i$, such that any closed form, a, in the ideal, $I((\bigoplus_{i=0}^{\infty} B_i))$, is exact.

Slogan: Massey products are the local obstructions to commutativity.

Interlude: The world's briefest introduction to algebraic operads

Operads

 An operad is a bit like a group: it abstracts away the properties of some kind of a multiplicative structure like an associative or Lie algebra.

⁴Actually a representation of \mathbb{S}_n

37th Annual Meeting of the Irish Mathematic Higher invariants in homotopy theory

Operads

- An operad is a bit like a group: it abstracts away the properties of some kind of a multiplicative structure like an associative or Lie algebra.
- Algebras are a bit like group representations, they are concrete examples of objects equipped with such a multiplication.
- An operad consists of:
 - A vector space⁴ P(n) for each n ∈ N. This is the space of all operations that take n-inputs. For the associative operad this has dimension (n!), for the commutative just 1.
 - A composition rule for operations. Given μ ∈ P(n) and τ ∈ P(m), one has rule assigning an operation μ ∘_i τ ∈ P(n + m − 1)
- You can apply an operad to a vector space and then you get the free \mathcal{P} -algebra on that space. (Operads are essentially a decomposition of the free \mathcal{P} -algebra monad)

⁴Actually a representation of \mathbb{S}_n

- The associative operad is generated by a single arity two operation $\mu = -\cdot \in \mathcal{P}(2)$
- The free operad $\mathcal{F}(R)$ is made up of sums of trees.
- To get the associative operad we quotient $\mathcal{F}(\mu)$ by an operadic ideal generated by the following element.

• The associative operad is $\mathcal{F}(R)/(E)$, it is quadratic.

• Sometimes the relations between operations can be viewed as operations in their own right.

- Sometimes the relations between operations can be viewed as operations in their own right.
- For example, in the commutative operad *ab ba* is a relation. This kinda looks like a Lie bracket, right?

- Sometimes the relations between operations can be viewed as operations in their own right.
- For example, in the commutative operad *ab ba* is a relation. This kinda looks like a Lie bracket, right? The set of all relations winds up being the *Lie cooperad* (the linear dual to the Lie operad).

20/31

- Sometimes the relations between operations can be viewed as operations in their own right.
- For example, in the commutative operad *ab ba* is a relation. This kinda looks like a Lie bracket, right? The set of all relations winds up being the *Lie cooperad* (the linear dual to the Lie operad). This relationship is reciprocal. The Lie and the Com operads are *Koszul dual*.

- Sometimes the relations between operations can be viewed as operations in their own right.
- For example, in the commutative operad ab ba is a relation. This kinda looks like a Lie bracket, right? The set of all relations winds up being the Lie cooperad (the linear dual to the Lie operad). This relationship is reciprocal. The Lie and the Com operads are Koszul dual. This pops up all the time. Ass and Pois are self-dual. Leibniz ~ Zinbiel. PreLie ~ Perm.

- Sometimes the relations between operations can be viewed as operations in their own right.
- For example, in the commutative operad ab ba is a relation. This kinda looks like a Lie bracket, right? The set of all relations winds up being the Lie cooperad (the linear dual to the Lie operad). This relationship is reciprocal. The Lie and the Com operads are Koszul dual. This pops up all the time. Ass and Pois are self-dual. Leibniz ~ Zinbiel. PreLie ~ Perm. For quadratic operads, one has

$$(\mathcal{F}(R)/(E))^{i} = \mathcal{C}(sR, s^{2}E) \hookrightarrow \mathcal{F}^{c}(sR)$$

So relations can also all be represented as trees!

Massey products for algebras over algebraic operads

Generalising Massey products

- The idea is that *P*-Massey products should correspond precisely to co-operations (represented as trees) in the Koszul dual cooperad *P*ⁱ. The order of the operation corresponds to the weight of the tree.
- You have an inductive map on the weight of the tree given by pruning all the branches at the root of trees.

• The weight zero operation correspond to the initial inputs.

Theorem (FC-Moreno-Fernandez, 2023) Weakly equivalent \mathcal{P} -algebras have the same \mathcal{P} -Massey products. 37th Annual Meeting of the Irish Mathematic Higher invariants in homotopy theory August 30, 2024 22/31

Specializing to various cases and operads, we recover:

• Weight 1 trees: regular operations on the \mathcal{P} -algebra.

- \bullet Weight 1 trees: regular operations on the $\mathcal{P}\text{-algebra}.$
- Associative operad: classical Massey products

- Weight 1 trees: regular operations on the \mathcal{P} -algebra.
- Associative operad: classical Massey products
- Lie operad: The Lie-Massey brackets of Retah and Alladay

- Weight 1 trees: regular operations on the \mathcal{P} -algebra.
- Associative operad: classical Massey products
- Lie operad: The Lie-Massey brackets of Retah and Alladay
- Weight 2 trees: Generalisations of Massey triple products previously defined by Muro [9].

- Weight 1 trees: regular operations on the \mathcal{P} -algebra.
- Associative operad: classical Massey products
- Lie operad: The Lie-Massey brackets of Retah and Alladay
- Weight 2 trees: Generalisations of Massey triple products previously defined by Muro [9].

- Weight 1 trees: regular operations on the \mathcal{P} -algebra.
- Associative operad: classical Massey products
- Lie operad: The Lie-Massey brackets of Retah and Alladay
- Weight 2 trees: Generalisations of Massey triple products previously defined by Muro [9].
- Dual numbers operad \mathcal{D} : Algebras over \mathcal{D} are bicomplexes. The Massey products are precisely the differentials in the associated spectral sequence.

- Weight 1 trees: regular operations on the \mathcal{P} -algebra.
- Associative operad: classical Massey products
- Lie operad: The Lie-Massey brackets of Retah and Alladay
- Weight 2 trees: Generalisations of Massey triple products previously defined by Muro [9].
- Dual numbers operad \mathcal{D} : Algebras over \mathcal{D} are bicomplexes. The Massey products are precisely the differentials in the associated spectral sequence.
- Poisson operad: No closed formulae. Here's third order operation.

$$\begin{split} [y_{\wedge,(1,2)},y_{\wedge,(3,4)}] + [z_1,x_{b,(2,3,4)}] + [x_{b,(1,3,4)},z_2] + 2[z_1,x_{a,(3,4,2)}] \\ + 2[y_{[-],(1,3)},y_{\wedge,(4,2)}] + 2[z_1,x_{a,(2,3,4)}] + 2[x_{a,(1,2,3)},z_4] + 2[z_3,x_{a,(1,4,2)}] \\ + 2[x_{a,(1,4,3)},z_2] + [x_{b,(2,3,1)},z_4] + [x_{b,(3,1,2)},z_4] \end{split}$$

Cotriple products

- (日)

< ∃⇒

• Over \mathbb{F}_p there is an extra linear map, the Frobenius automorphism $x\mapsto x^p$

- Over \mathbb{F}_p there is an extra linear map, the *Frobenius automorphism* $x \mapsto x^p$
- Therefore over \mathbb{F}_p there are 'extra' Massey products that arise in a fundamentally different way to classical Massey products.

- Over \mathbb{F}_p there is an extra linear map, the *Frobenius automorphism* $x \mapsto x^p$
- Therefore over \mathbb{F}_p there are 'extra' Massey products that arise in a fundamentally different way to classical Massey products.
- Example: secondary stable Steenrod operations (computed by Baues [2])

- Over \mathbb{F}_p there is an extra linear map, the *Frobenius automorphism* $x \mapsto x^p$
- Therefore over \mathbb{F}_p there are 'extra' Massey products that arise in a fundamentally different way to classical Massey products.
- Example: secondary stable Steenrod operations (computed by Baues [2])
- One may use these to study (strictly) commutative algebras [5]. These are hard to study using more classical tools.

Cotriple products can be used to produce examples of:

- Commutative algebras A, B over Z such that A ⊗ Q and B ⊗ Q are weakly equivalent, but A ⊗ F_p and B ⊗ F_p are not.
- Commutative algebras which have a divided power structure on cohomology but which are not weakly equivalent to a divided power algebra.
- Commutative algebras A, B over 𝔽_p, which are weakly equivalent as associative algebras but not commutative algebras. This answers a question raised in a recent paper⁵.
- (On-going) Commutative algebras A, B over 𝔽_p that are weakly equivalent as E_∞-algebras but not commutative algebras.

⁵R. Campos et al. *Lie, associative and commutative quasi-isomorphism*. To appear in Acta Mathematica. arXiv: 1904.03585 [math.RA].

August 30, 2024

26/31

- One has a notion of an E_{∞} -algebra. This is an algebra that is not commutative 'on the nose' but is up to coherent homotopy.
- A natural question is: when such an E_{∞} -algebra is weakly equivalent to a commutative algebra?
- There are obstructions: A subset of the cotriple operations, called *higher Steenrod operations*.

Theorem (FC [5])

An E_{∞} -algebra is rectifiable if and only if its higher Steenrod operations vanish coherently.

- Massey products are *effective*. Write a Python program that can effectively compute them.
- Applications in differential geometry. Find a Poisson manifold, that is formal as a manifold (for example, Kähler) and as a Lie algebra but not as a Poisson manifold.
- Operadic Koszul duality is not the only form of Koszul duality. Find Massey products in this context.
- There are *vastly* more complicated generalisations of operads called modular operads and properads. The difference is that these are defined in terms of more general graphs rather than trees. Define Massey products in this context. In particular, try to say something interesting about Calabi-Yau manifolds.

- C. Allday. "Rational Whitehead products and a spectral sequence of Quillen. II". In: *Houston J. Math.* 3.3 (1977), pp. 301–308. ISSN: 0362-1588.
- H. J. Baues. The algebra of secondary cohomology operations. Vol. 247. Progress in Mathematics. Birkhäuser Verlag, Basel, 2006, pp. xxxii+483. ISBN: 3-7643-7448-9; 978-3-7643-7448-8. DOI: 10.1007/3-7643-7449-7. URL: https://doi.org/10.1007/3-7643-7449-7.
- [3] R. Campos et al. Lie, associative and commutative quasi-isomorphism. To appear in Acta Mathematica. arXiv: 1904.03585 [math.RA].

References II

- P. Deligne et al. "Real homotopy theory of Kähler manifolds". In: Invent. Math. 29.3 (1975), pp. 245–274. ISSN: 0020-9910. DOI: 10.1007/BF01389853. URL: https://doi.org/10.1007/BF01389853.
- [5] O. Flynn-Connolly. An obstruction theory for strictly commutative algebras in positive characteristic. 2024. arXiv: 2404.16681 [math.AT].
- [6] O. Flynn-Connolly and J. M. Moreno-Fernández. Higher order Massey products for algebras over algebraic operads. 2024. arXiv: 2304.13411 [math.AT]. URL: https://arxiv.org/abs/2304.13411.
- [7] W. S. Massey. "Some higher order cohomology operations". In: Symposium internacional de topología algebraica International symposium on algebraic topology. Universidad Nacional Autónoma de México and UNESCO, México, 1958, pp. 145–154.

- [8] J. P. May. "Matric Massey products". In: J. Algebra 12 (1969), pp. 533-568. ISSN: 0021-8693. DOI: 10.1016/0021-8693(69)90027-1. URL: https://doi.org/10.1016/0021-8693(69)90027-1.
- [9] F. Muro. "Massey products for algebras over operads". In: (). To appear in *Communications in Algebra*, 2023.
- [10] V. S. Retah. "The Massey operations in Lie superalgebras, and deformations of complex-analytic algebras". In: *Funkcional. Anal. i Priložen.* 11.4 (1977), pp. 88–89. ISSN: 0374-1990.