The homotopy theory of the little *n*-discs operad

Oisín Flynn-Connolly

Université Paris-Sud

July 17, 2020

Oisín Flynn-Connolly (Université Paris-Sud) The homotopy theory of the little n-discs ope

- The little *n*-discs operad \mathbb{D}_n was introduced by J. P. May in 1979 to model algebra structures on *n*-fold loop spaces.
- We have inclusions

$$\mathbb{D}_1 \hookrightarrow \mathbb{D}_2 \hookrightarrow \cdots \hookrightarrow \mathbb{D}_\infty$$

Each defines a class of homotopy associative algebras that get steadily 'more commutative'

Why do we care?

- Provides a 'recognition principle' for *n*-fold loop spaces.
- The homology of \mathbb{D}_n can be shown to be $Pois^n$. Implies the existence of a Browder bracket of degree 1 n on the homology of *n*-fold loop spaces.

- Introduce the little discs operad and coalgebras over it.
- Introduce the homotopy theory of operads.
- Solution Talk about the Barratt-Eccles *E_n*-operad.
- Oiscuss simplicial models for the coendomorphism operad.
- Sook at *E_n*-algebras in simplicial sets.
- **(5)** Look at the homotopy Barratt-Eccles operad $(E_1$ -case)
- Conjectures and further work.

- The little n-discs space D_n(r) consists of all pairwise disjoint embeddings of r (labelled) little discs inside a fixed unit n-disc.
- It is a subset of Map_{Top}(⊔^r_{i=1}Dⁿ, Dⁿ), and so equipped with the compact-open topology.

The little *n*-disc operad: operadic composition

Operadic composition is via the illustrated substituting procedure.

As promised

Theorem (May's recognition principle)

Every n-fold loop space is a \mathbb{D}_n -algebra. Conversely, if X is a connected space that is an algebra over \mathbb{D}_n then it has the weak homotopy type of the n-fold loop space of some connected pointed space Y.

The nested sequence of little discs operads

- There is a topological morphism $\mathbb{D}_n(r) \hookrightarrow \mathbb{D}_{n+1}(r)$ given by the equatorial map.
- This sends any little *n*-disc with centre \vec{P} and radius *R* to the (n+1)-disc with centre $(\vec{P}, 0)$ and radius *R*.
- For example; see the diagram (image credit to Benoit Fresse).

 This extends to a morphism of operads and defines an infinite sequence of inclusions

$$\mathbb{D}_1 \hookrightarrow \mathbb{D}_2 \hookrightarrow \cdots \mathbb{D}_i \hookrightarrow \mathbb{D}_{i+1} \hookrightarrow \cdots$$

• Define $\mathbb{D}_{\infty} = \operatorname{colim}_n \mathbb{D}_n$

- This is a heuristic that asserts some notions in algebraic topology are naturally dual to each other.
- For example; fibration \sim cofibrations; homotopy groups \sim cohomology groups; wedge products \sim smash products; suspensions \sim loop spaces.
- Eckmann-Hilton duality asserts that if all concepts in a theorem are replaced by their dual the theorem should remain true.
- Dual theorems do not necessarily admit dual proofs.

Coalgebras of the little *n*-discs operad

- We would like to study suspensions using the little *n*-discs operad.
- Problem: No natural notion of cooperad in Top.
- Solution (Moreno-Fernández, Wierstra): Define 𝒫-coalgebras as operadic morphisms φ : 𝒫 → CoEnd(X) where CoEnd(X) is the coendomorphism operad of X.

Definition (Coendomorphism operad)

Let X be a **pointed** space. The *coendomorphism operad* CoEnd(X) has arity r component

$$CoEnd(X)(r) := Map_*(X, X^{\vee r})$$

For r = 0, set $CoEnd(X)(0) = Map_*(X, *) = *$. The symmetric group action permutes the wedge factors in the output. The operadic composition maps are defined by

$$\gamma(f, f_1, \cdots, f_n) := (f_1 \vee \cdots \vee f_n) \circ f$$

Coalgebras of the little n discs operad

Example (The pointed *n*-sphere)

- Suffices to define maps $\triangle_r : \mathbb{D}_n(r) \times S^n \to (S^n)^{\vee r}$.
- Let $x = (f_1, f_2, \dots, f_r) \in \mathbb{D}_n(r)$ (note: $f_i : D^n \to D^n$) and $y \in D^n$. Define $\triangle'_r : \mathbb{D}_n(r) \times D^n \to (\bigsqcup_{i=1}^r D^n) \cup \{*\}$

$$riangle_r'(x,y) = egin{cases} * & ext{if } y \notin f_i(D^n) orall i \ f_i^{-1}(y) & ext{otherwise.} \end{cases}$$

• $riangle_r'$ descends to a map $\mathbb{D}_n(r) \times S^n \to (S^n)^{\vee r}$, by collapsing everything the boundary of every disc.

Theorem

The n-fold suspensions are coalgebras over \mathbb{D}_n .

The model category of operads

• Let **C** be a closed symmetric monoidal model category. Is there an induced structure on operads over it?

Theorem (Berger-Moerdjik, 2003)

Let (C, \otimes, W, C, F) be a closed symmetric monoidal cofibrantly generated model category with unit I such that

- I is cofibrant
- 2 the over-category C/I has a symmetric monoidal fibrant replacement functor
- **O C** admits a commutative Hopf interval.

Then there is a cofibrantly generated model structure on the category of reduced operads, in which a morphism of reduced operads $f : \mathscr{P} \to \mathscr{Q}$ is a fibration (resp. weak equivalence) if and only if the induced map $\mathscr{P}(n) \to \mathscr{Q}(n)$ is a fibration (resp. weak equivalence) in the category $\mathbf{C}^{\mathbb{S}_n}$ for all $n \in \mathbb{N}_0$.

The simplicial operad Γ

- Motivation: We want a model for the \mathbb{D}_∞ operad.
- Each element of $\Gamma(r)_n$ is a n + 1-tuple $\langle \sigma_0, \dots, \sigma_n \rangle$ of elements from \mathbb{S}_r .
- Face and degeneracy maps given by repeating or omitting elements of the tuple. (In other words, this is universal bundle construction applied to S_r)
- The symmetric group action is componentwise within each tuple.
- Composition is also componentwise. Within each component, the composition is that of the associative operad.
- For example; let $(1,2), \textit{id} \in \mathbb{S}_2$

$$\begin{split} \langle (1,2), \textit{id} \rangle \circ_2 \langle (1,2), \textit{id} \rangle &= \langle (1,2) \circ_2 (1,2), \textit{id} \circ_2 \textit{id} \rangle \\ &= \langle (1,3,2), \textit{id} \rangle \in \mathbb{S}_3 \times \mathbb{S}_3 \end{split}$$

- Defined via the Smith filtration of the symmetric operad.
- Let τ be a permutation in \mathbb{S}_r . For i < j, let $\tau|_{i,j}$ be 0 if $\tau(i) < \tau(j)$ and 1 otherwise.
- Consider a simplex $\sigma = (\sigma_0, \ldots, \sigma_n)$ in $\Gamma(r)_n$. Let μ_{ij}^{σ} be the number of times the sequence $(\sigma_0|_{i,j}, \ldots, \sigma_n|_{i,j})$ changes values.
- The Barratt-Eccles E_k operad Γ^(k)(r)_n consists of the σ ∈ Γ(r)_n such that μ^σ_{ii} < k for all i < j.
- One obtains a sequence of inclusions

$$\Gamma^{(1)} \hookrightarrow \Gamma^{(2)} \hookrightarrow \cdots \hookrightarrow \Gamma^{(i)} \hookrightarrow \cdots \hookrightarrow \Gamma$$

Theorem

The geometric realization of the Barratt-Eccles E_n operad is weakly equivalent to the little n-discs operad.

- One can decompose the simplicial operad into contractible cells labelled by a certain operadic poset K, in a way compatible with the operad structure.
- Note: This dissection is compatible with the Smith filtration.
- One shows that the little *n*-discs operad can also be dissected into contractible cells labelled by *K*.
- Geometrically realize the simplicial operad.
- Both $|\Gamma^{(n)}|$ and \mathbb{D}_n admit retraction onto the realisation of the nerve of the poset and so are weakly equivalent.

- Want to study the analogue of the the coendomorphism operad for simplicial sets.
- The naïve notion is to

$$\operatorname{Map}_{\operatorname{Set}_{\bigtriangleup}}(X, X^{\vee r}).$$

- This is not great consider $S^1 = \triangle^1 / \partial \triangle^1$.
- In fact it doesn't even have the right homotopy type.

There is a natural way to transfer operads into simplicial sets.

Definition

Let \mathscr{P} be a topological operad. We define an operad $S_{\bullet}\mathscr{P}$ over Set_{\triangle} with arity *n* component

$$(S_{\bullet}\mathcal{P})(n) := S_{\bullet}(\mathcal{P}(n))$$

where S_{\bullet} is the singular chains functor. The action of $\sigma \in \mathbb{S}_n$ on $S_{\bullet}\mathcal{P}(n)$ is given by $S_{\bullet}\mathcal{P}(n) * \sigma := S_{\bullet}(\mathcal{P}(n) * \sigma)$. The operadic composition map is $\gamma_{S_{\bullet}\mathcal{P}} := S_{\bullet}(\gamma_{\mathcal{P}})$ and we take the unit to be the simplex $[\Delta^0 \to 1_{\mathsf{Top'}}] \in S_{\bullet}\mathcal{P}(1)$. • This tells us what the 'correct' simplicial coendomorphism operad should look like (up to homotopy type).

 $S_{\bullet}(\mathsf{CoEnd}_{\mathsf{Top}}(X))$

• If X is an *n*-fold simplicial suspension this has the stucture of homotopy Barratt-Eccles *E_n*-coalgebra via the morphism

 $S(\Phi): S_{\bullet}(\mathbb{D}_n) \to S_{\bullet}(\mathsf{CoEnd}_{\mathsf{Top}}(|X|))$

The simplicial coendomorphism operad: Part 3

Let X be a finite simplicial set.

 $\bullet\,$ Recall Kan's $\mathsf{Ex}^\infty\text{-}\mathsf{functor}$ is defined as the colimit of the following diagram

$$X \to \operatorname{Ex}(X) \to \operatorname{Ex}^2(X) \to \cdots \operatorname{Ex}^i(X) \to \cdots$$

where Ex is the right adjoint to the barycentric subdivision functor sd .Consider the operad

$$\mathsf{CoEnd}_{\mathsf{Set}_{\bigtriangleup}}(X)(r) = \mathsf{Map}_{\mathsf{Set}_{\bigtriangleup}}(X, \mathsf{Ex}^{\infty}(X^{\vee r}))$$

- Notice that every morphism f : X × △^m → Ex[∞](X^{∨r}) factors through Ex^{N_f}(X^{∨r}) for some finite N_f.
- We therefore have an adjoint map

$$(f, N_f)$$
 : sd ^{N_f} $(X \times \triangle^m) \to X^{\vee r}$.

The simplicial coendomorphism operad: Part 3

Let $f \in \text{CoEnd}(X)(r)_m$ and $f_i \in \text{CoEnd}(X)(n_i)_m$ for $1 \leq i \leq r$. We define their composition as the adjoint $\overline{F} : X \times \triangle^m \to X^{\vee n_1 + \cdots n_r}$ to the map $F : \text{sd}^{N+N_f}(X \times \triangle^m) \to X^{\vee n_1 + \cdots n_r}$

$$F: \mathrm{sd}^{N+N_{f}}(X \times \bigtriangleup^{m}) \xrightarrow{\mathrm{sd}^{N}(\delta_{X \times \bigtriangleup^{m}})} \mathrm{sd}^{N}(\mathrm{sd}^{N_{f}}(X \times \bigtriangleup^{m}) \times \mathrm{sd}^{N_{f}}(X \times \bigtriangleup^{m}))$$

$$\xrightarrow{\mathrm{sd}^{N}(\mathrm{id} \times \mathrm{sd}^{N_{f}}(\pi_{2}))} \mathrm{sd}^{N}(\mathrm{sd}^{N_{f}}(X \times \bigtriangleup^{m}) \times \mathrm{sd}^{N_{f}}(\bigtriangleup^{m})) \xrightarrow{a} \mathrm{sd}^{N}(\mathrm{sd}^{N_{f}}(X \times \bigtriangleup^{m}) \times \bigtriangleup^{m})$$

$$\xrightarrow{\mathrm{sd}^{N}((f,N_{f})))} \mathrm{sd}^{N}(X^{\vee r} \times \bigtriangleup^{m}) \xrightarrow{b} \mathrm{sd}^{N}(X \times \bigtriangleup^{m})^{\vee r} \xrightarrow{(f_{1},N) \vee \cdots \vee (f_{r},N)} X^{\vee n_{1}+\cdots n_{r}}$$

- N is the integer $\max(N_{f_1}, \ldots, N_{f_n})$.
- (f, N) : sd^N $(X \times \triangle^m) \to X^{\vee n_i}$ is the last vertex map.
- $\delta_{\mathrm{sd}^{N_f}(X \times \bigtriangleup^m)} : \mathrm{sd}^{N_f}(X \times \bigtriangleup^m) \to \mathrm{sd}^{N_f}(X \times \bigtriangleup^m) \times \mathrm{sd}^{N_f}(X \times \bigtriangleup^m)$ is the diagonal map.

•
$$\pi_2: X \times \triangle^m \to \triangle^m$$
 is the projection.

Definition

Let \mathscr{P} be an operad in simplicial sets. We shall say that a finite simplicial set X is a \mathscr{P} -coalgebra if there exists an operadic morphism $\Phi : \mathscr{P} \to \text{CoEnd}(X)$.

- One can show that CoEnd_{Set_△}(X) is weakly equivalent to S_• CoEnd_{Top}(X) and it follows from the homotopy transfer principle that there is a homotopy Barratt-Eccles structure on simplicial suspensions.
- The next natural question is to describe it.
- Therefore we need a model for the homotopy Barratt-Eccles operad.

The homotopy Barratt-Eccles operad

- Need a cofibrant model for the Barratt-Eccles operad.
- We apply the Boardman-Vogt resolution, a canonical cofibrant replacement functor for the operadic model category.

Theorem

Let \mathcal{G} be the directed graph on

$$\frac{3P_{n-1}(3) - P_{n-2}(3)}{4n}$$

vertices, where P_n is the nth Legendre polynomial and where each vertex v_T is labelled by an n-ary non-unital tree with no vertices of arity 0. The edges of \mathcal{G} are defined as follows; there is a directed edge from v_T to v_S iff one can obtain T from S by collapsing internal edges. Then this graph forms a poset $\overline{\mathcal{G}}$ and

$$W(\triangle^1, E_1)(n) = \bigsqcup_{\alpha} \mathcal{N}(\overline{\mathcal{G}})$$

The W-construction of the E_1 operad

Conjecture

- To describe the coalgebra structure, we start with the simplest case, the suspension of the point (which is S^1) and the Barratt-Eccles E_1 -operad.
- The set $Ex^{\infty}(S^1)_1$ consists of eventually constant strings of the form

$$\bullet \xrightarrow{\sigma} \bullet \xleftarrow{*} \bullet \xrightarrow{\sigma} \bullet \xleftarrow{*} \bullet \xrightarrow{*} \bullet \xleftarrow{*} \bullet \xleftarrow{*} \bullet \xrightarrow{*} \bullet \xleftarrow{*} \bullet \xrightarrow{\sigma} \cdots$$

where \ast is the degeneracy of the base point and σ is the nondegenerate 1-simplex.

 The simplicial set W(△¹, Assoc)(2) consists of two disjoint 1-simplices p, q. We conjecture that the coalgebra structure is given in arity 2

$$W(\triangle^{1}, \operatorname{Assoc})(2) \times S^{1} \to \operatorname{Ex}^{\infty}(S^{1} \vee S^{1})$$

$$p \mapsto (\bullet \xrightarrow{\alpha} \bullet \xleftarrow{*} \bullet \xrightarrow{\beta} \bullet \xleftarrow{*} \bullet \xrightarrow{*} \bullet \xleftarrow{*} \bullet \xrightarrow{*} \cdots)$$

$$q \mapsto (\bullet \xrightarrow{*} \bullet \xleftarrow{\alpha} \bullet \xrightarrow{*} \bullet \xleftarrow{\beta} \bullet \xrightarrow{*} \bullet \xleftarrow{*} \bullet \xrightarrow{*} \cdots)$$

We suggest that it may possible to

- Prove a recognition principle for iterated suspensions
- Construct analogues of the Dyer-Lashof and Kudo-Araki operations for iterated suspensions.

I'd like to thank my supervisors Felix Wierstra and Grégory Ginot. Thanks for listening, any questions?