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Abstract

Cette thèse est composée de sept parties.

1. La première partie consiste en une introduction aux thèmes de cette thèse, suivie
d’un résumé des parties suivantes. Elle est rédigée en français et en anglais.

2. La deuxième partie porte sur un principe de corecognition pour les suspensions
itérées et est basée sur un article écrit avec Felix Wierstra et José Moreno-Fernandez,
et a été soumis à une revue.

3. La troisième partie porte sur une généralisation des produits de Massey aux opérades
de Koszul et est basée sur un article écrit avec José Moreno-Fernandez, et a été
soumis à une revue.

4. La quatrième partie introduit les produits cotriples et porte sur une théorie d’obstruction
pour les algèbres commutatives. Elle est destinée à être publiée avec un preprint
actuellement disponible sur ArXiv.

5. La cinquième partie concerne la construction et les propriétés de la version p-
adique du complexe de Rham. Elle est destinée à être publiée.

6. La sixième partie est consacrée à un contre-exemple. Nous présentons deux al-
gèbres commutatives qui sont quasi-isomorphes en tant qu’algèbres E∞ mais pas
en tant qu’algèbres commutatives. Elle est destinée à être publiée.

7. La septième partie concerne une généralisation du théorème de Hochschild-Konstant-
Rosenberg et la construction de structures de coalgèbres de Poisson au niveau de la
chaîne sur le complexe de Hochschild. Elle est destinée à être publiée.

Mots-clés

Algèbres supérieures, opérades, algèbres commutatives, dualité de Koszul, produits de Massey,
E∞-algèbres, opérade des petits disques, formes de Rham p-adiques, principe de reconnais-
sance de May.
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Abstract

This thesis consists of seven parts.

1. The first part consists of an introduction to the themes of this thesis, followed by a
summary of the following parts. It is written both in French and in English.

2. The second part is about a corecognition principle for iterated suspensions and is
based on an article written with Felix Wierstra and José Moreno-Fernandez, and is
currently under review.

3. The third part is about a generalisation of Massey products to Koszul operads and
is based on an article written with José Moreno-Fernandez, and is currently under
review.

4. The fourth part introduces cotriple products and is about an obstruction theory
for commutative algebras. It is intended for publication with a preprint currently
available on ArXiv.

5. The fifth part is about the construction and properties of p-adic version of the de
Rham complex. It is intended for publication.

6. The sixth part is devoted to a counterexample. We exhibit two commutative algebras
that are quasi-isomorphic as E∞-algebras but not as commutative algebras. It is
intended for publication.

7. The seventh part is about a generalisation of the Hochschild-Konstant-Rosenberg
theorem and the construction of Poisson coalgebra structures on chain level on the
Hochschild complex. It is intended for publication.

Keywords

Higher algebra, operads, commutative algebras, Koszul duality, Massey products, E∞
algebras, little disks operad, p-adic de Rham forms, May’s recognition principle
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Introduction

0.1 Introduction: commutativité supérieure

En arithmétique, la commutativité semble être quelque chose d’incroyablement naturel et
de hautement trivial. Chaque petit enfant qui apprend ses tables de multiplication pour la
première fois sait intuitivement que a×b = b×a. Ce n’est que lorsqu’on atteint l’université et
qu’on rencontre les matrices qu’on cesse vraiment de prendre la commutativité pour acquise.
Pendant vos études de premier cycle, une fois que vous rencontrez les algèbres de Lie et autres,
la non-commutativité commence à sembler presque plus normale que la commutativité.

Tout change lorsque vous faites de la topologie algébrique pour la première fois. Lors
de votre premier cours, vous serez introduit à un phénomène intéressant. En étudiant le
groupe fondamental d’un espace, on apprend que la composition des lacets sur un espace
topologique n’est pas strictement associative, mais l’est à homotopie près. Il s’avère que
les espaces de lacets peuvent, avec quelques astuces, être rendus équivalents à l’espace de
lacets de Moore, qui est strictement associatif. C’est la première fois que ce processus, la
strictification, apparaît dans cette thèse, mais certainement pas la dernière.

Les choses deviennent encore plus intéressantes lorsqu’on commence à considérer les
espaces de lacets itereé 2-fois, Ω2(X ). En tant qu’ensemble, celui-ci possède également
une notion de composition des lacets, directement induite par l’application pincement
S2 → S2 ∨S2. Encore une fois, on peut considérer ce groupe à homotopie près. Il s’avère
que ce groupe π2(X ) est commutatif ! Cela suggère un fait beaucoup plus profond : Stasheff,
Boardman-Vogt et May ont réalisé que cette commutativité pouvait, en quelque sorte, être
élevée au niveau de l’espace Ω2(X ) lui-même. C’est la première apparition d’un type de
commutativité bien plus étrange : les En-algèbres.

Discuter de ce type de commutativité nécessite un tout nouveau langage, celui des
opérades. Les opérades permettent de capturer la notion de structure algébrique sur un
espace ou un complexe de chaînes sans référence à l’objet lui-même. May a introduit toute
une famille étendue de telles opérades, encodant l’idée d’algèbres progressivement plus

8



commutatives :
E1 ⊂ E2 ⊂ ·· · ⊂ E∞

En utilisant ces outils, May a prouvé son célèbre Recognition Principle. En fixant la petite
opérade des n-cubes Cn comme choix de modèle pour la En-opérade , il a montré que tout
espace de lacets itereé n fois est une algèbre sur la Cn-opérade, et inversement, toute Cn-
algèbre semblable à un groupe est faiblement homotopique à un espace de lacets itereé n
fois. Ce principe a été le point de départ de nombreux progrès en topologie algébrique.

Pour donner juste un exemple : il s’avère que l’homologie de la petite opérade des n-
disques est l’opérade n-Poisson. Cela implique immédiatement que l’homologie des espaces
de lacets itereé n fois possède non seulement le produit de Pontryagin induit par la concaté-
nation des lacets, mais aussi un produit binaire de degré 1−n appelé le crochet de Browder.
De manière bien moins évidente, dans un calcul étonnant réalisé avec Lada et Cohen, May
a montré que le calcul de l’homologie équivariante mod 2 et mod p de la petite opérade
des disques révèle des produits plus complexes appelés les opérations de Dyer-Lashof et
de Kudo-Araki. La connaissance de ces opérations déverrouille la structure complète de
l’homologie des espaces de lacets.

Mais la principale application de la commutativité supérieure est dans l’étude de l’algèbre
des cochaînes d’un espace. Dans la catégorie des espaces de cochaînes, l’application diago-
nale X → X ×X , x 7→ (x, x) est évidemment co-commutative. Cependant, le produit binaire
induit sur la cohomologie, le produit en coupe −∪− : C∗(X ,R)⊗C∗(X ,R) →C∗(X ,R) n’est
normalement pas commutatif. Mandell a réalisé que la commutativité était toujours présente,
simplement cachée sous la forme d’une E∞-algèbre. Il a prouvé que le type d’homotopie
de cette algèbre était le Saint Graal de la topologie algébrique : un invariant d’homotopie
complet pour les espaces de type fini et nilpotents.

Depuis lors, de nombreux progrès ont été réalisés pour affaiblir les hypothèses du théorème
ci-dessus, bien que le programme ne soit pas encore tout à fait complet. Rivera et Zeinalian
ont montré que si l’on travaille avec une équivalence des B∞-algèbres plutôt que des E∞-
algèbres, il est possible de récupérer le groupe fondamental à partir du type d’homotopie
des cochaînes singulières. Avec Wierstra, ils ont fait des progrès significatifs pour supprimer
l’hypothèse de nilpotence du théorème de Mandell. L’hypothèse du type fini a récemment
été étudiée par Bachmann et Burklund, où ils ont réussi à l’éliminer en travaillant avec un
complexe de chaînes plutôt qu’avec des cochaînes. La dernière pièce manquante du puzzle,
bien sûr, est d’obtenir un invariant d’homotopie complet des espaces en combinant les deux
approches.

Après l’introduction historique, nous passons à une discussion sur le contenu technique
de la thèse.
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0.2 Synopsis de la thèse

0.2.1 Corecognition pour les suspensions

Dans cet article, fruit d’un travail conjoint avec Moreno-Fernández et Wierstra, nous démon-
trons un principe de reconnaissance pour les suspensions itérées. Le résultat principal est le
suivant, où Cn est le petit opérade n-discs, qui est un modèle pour l’opérade En .

Theorem A. Chaque suspension n-fold est une Cn-coalgèbre, et si un espace pointu est une
Cn-coalgèbre alors c’est une homotopie équivalente à une suspension n-fold.

En particulier, le lecteur doit noter que nos méthodes de preuve ne sont pas duales à celles
de May et que la plupart de nos résultats sont légèrement plus fortes, parlant d’équivalence
d’homotopie plutôt que d’équivalence faible.

0.2.1.1 Contexte

Le principal élément de contexte du résultat est le May’s recognition principle, qui dit qu’un
espace de type groupe est une algèbre En par rapport au produit cartésien × et seulement s’il
a le type d’homotopie faible d’un espace de lacets itérés n-fois. Comme étape intermédiaire
dans sa preuve, May avait également un théorème d’approximation, qui dit que la monade
associée à la petite opérade n-cubes est faiblement équivalente à la monade ΩnΣn , où Ω est
le foncteur d’espace de lacet et Σ est le foncteur de suspension.

0.2.1.2 Coalgèbres sur opérades topologiques : approche 1

Nous commençons par définir la notion de cogèbre sur une opérade. Le contexte est que nous
souhaitons travailler dans la catégorie des espaces topologiques pointus (Top∗,∨) équipés du
coproduit catégoriel ∨. Dans (Top∗,∨), chaque objet a une opérade associée, donnée par

CoEnd(X )(n) =MapTop∗
(
X , X ∨n)

Le groupe symétrique agit par permutation de facteurs dans la somme pointée et la composi-
tion opéradique provient de la composition de fonctions ( f ; f1, f2, . . . fn) 7→ (

f1 ∨·· ·∨ fn
)

ci r c f .
Soit P un opérade (non pointé) dans les espaces topologiques. Alors une coalgèbre sur P est
un morphisme d’opérades P → CoEnd(X ). Cela correspond très bien à la définition du bon
sens d’une cogèbre étant une collection des applications

△n : P (n)×X → X ∨n .

0.2.1.3 Coalgèbres sur la petite opérade n-cubes

Le principal exemple de la définition précédente est celui des suspensions n-fold. En parti-
culier, les n-sphères sont équipées d’une telle structure via l’application de pincement. La
déclaration précise est la suivante.

Theorem B. La suspension réduite n d’un espace pointu X est une Cn-coalgèbre. Plus précisé-
ment, il existe une foncteur d’opérade naturelle et explicite

∇ : Cn →CoEndΣn X ,

10



où CoEndΣn X est l’opérade coendomorphisme de Σn X . L’application ∇ code la coassociativ-
ité d’homotopie et la cocommutativité d’homotopie de l’application de pincement classique
Σn X → Σn X ∨Σn X . En particulier, l’application de pincement est une opération associée à
un élément de Cn(2). De plus, pour toute application basée X → Y , l’application induite
Σn X →ΣnY s’étend à un morphisme de Cn-coalgèbres.

0.2.1.4 Coalgèbres sur opérades topologiques : approche 2

La deuxième approche des cogèbres consiste à définir une comonade associée à une opérade
unitaire (P ,∗). La comonade a alors une catégorie co-Eilenberg-Moore naturellement as-
sociée, et on peut définir les coalgèbres comme étant précisément les éléments de cette
catégorie.

Pour être précis, soit (P ,∗) une opérade unitaire, où ∗ ∈P (0) est l’unité. Nous définirons
la comonade comme étant un sous-espace de la construction suivante.

Tot(P , X ) := ∏
n≥0

MapSn

(
P (n), X ∨n)

.

Pour définir le sous-espace, nous avons besoin des opérateurs de restriction, donnés en
insérant le point unique ∗ ∈P (0) au i -ième composant :

P (n) P (n −1)

θ γ (θ; id, ...,∗, ..., id) .

di

Nous avons également besoin des applications d’effondrement, qui sont obtenues en réduisant
le i -ème facteur dans la somme pointée comme suit :

X ∨n X ∨(n−1)

(x1, ..., xn) (x1, ..., x̂i , ..., xn).

πi

Soit P un opérade unitaire dans Top. Maintenant l’endofoncteur dans les espaces pointus

CP :Top∗ Top∗

X CP (X ) ,

où

CP (X ) = {
α= (

f1, f2, ...
) ∈ Tot(P , X ) mi d πi fn = fn−1di pour tous n ≥ 2 et 1 ≤ i ≤ n

}
est le sous-espace de Tot(P , X ) formé par ces séquences

(
f1, f2, ...

)
qui font la navette avec les

opérateurs de restriction et les applications d’effondrement.

Pour réaliser la structure comonadique sur cet objet, il faut l’analyser un peu. Il s’avère
que tous les points α = (

f1, f2, ...
) ∈ CP (X ) sont déterminés en étendant le f1 : P (1) → X

11



composant d’une manière unique1. On peut donc définir la structure comonadique en
définissant un

△( f1) : P (1) →Map(P (1), X )

provenant de l’adjoint de la composition opéradique P (1)×P (1)
γ−→P (1).

0.2.1.5 Coalgèbres sur les opérades topologiques : conclusions

Le lecteur ne devrait pas être surpris de constater que les deux catégories de coalgèbres
décrites ci-dessus coïncident. Il y a une conséquence immédiate et importante à cela. Pre-
mièrement, en utilisant cette dernière définition, on peut montrer que si P (1) =∗, alors la
seule cogèbre sur P est le point∗. En particulier, il n’y a pas de cogèbres cocommutatives dans
les espaces et donc pas d’analogue de l’espace de lacet de Moore pour les suspensions. Ceci
(entre autres complexités liées à l’utilisation intensive de quasi-fibrations) rend l’approche de
May du principe de reconnaissance non dualisable.

0.2.1.6 Le théorème de coapproximation

Un résultat intermédiaire intéressant en soi est le suivant, qui est dual du théorème d’approximation
de May. La version de May de ce résultat a été essentielle au calcul de la cohomologie des
espaces de lacets itérés, et nous espérons que ce résultat sera tout aussi prometteur. Cela est
prouvé en construisant directement l’homotopie décrite via des arguments géométriques.

Theorem C. Pour chaque n ≥ 1, il existe un morphisme naturel des comonades

αn :ΣnΩn −→Cn .

Pour chaque espace pointu X , il existe une rétraction d’homotopie naturelle explicite des
espaces pointus

ΣnΩn X Cn(X )

En particulier, αn(X ) est une équivalence faible.

0.2.1.7 Le théorème de reconnaissance

L’article contient deux théorèmes de reconnaissance. Le premier est un principe de recon-
naissance sur la comonade ΣnΩn . Ceci est dual du Beck’s Recognition Principle.

Theorem D. Soit X une ΣnΩn-coalgèbre. Alors X est naturellement isomorphe à la sus-
pension réduite n d’un espace Pn(X ) qui peut être calculé comme l’égaliseur de la paire
d’applications suivante :

Ωn X ΩnΣnΩn X .
Ωnγ

ηΩn X

Ici, η est l’unité de l’adjonction (Σn ,Ωn), et γ est l’application induite par la structure de
ΣnΩn-coalgebra de X .

1Bien que le lecteur doive être averti que toutes les applications f1 : P (1) → X ne s’étendent pas à un tel α
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Le second, qui en est déduit via des arguments catégoriques, est dual du May’s recognition
principle.

Theorem E. Soit X une Cn-coalgèbre. Alors il existe un espace pointu Γn(X ), naturellement
associé à X , avec une faible équivalence de Cn-coalgèbres

ΣnΓn(X ) X ,≃

ce qui est un retrait dans la catégorie des espaces pointus. Par conséquent, chaque Cn-
coalgèbre a le type d’homotopie d’une suspension réduite n.

0.2.2 Dualité Koszul et produits Massey

Dans cet article, nous généralisons les produits Massey aux opérades arbitraires de Koszul et
calculons quelques exemples.

0.2.2.1 Contexte

Les produits triples de Massey ont été introduits par Massey en 1958. Leur objectif principal
est la théorie rationnelle de l’homotopie, où ils détectent et quantifient la non-formalité des
algèbres différentielles graduées. Elles sont les premières d’une séquence infinie d’opérations
supérieures qui remplissent la même fonction. Des opérations similaires ont été définies pour
les algèbres de Lie par Allday et Retah. Les produits triples de Massey ont été généralisés aux
opérades quadratiques arbitraires par Muro.

0.2.2.2 Produits P -Massey supérieurs

Les produits Massey pour une opérade Koszul P sont en correspondance avec des coopéra-
tions dans la coopérade Koszul duale P

¡. Pour être précis, rappelons que P
¡ est naturellement

gradué en fonction du poids . Nous définirons les produits Massey par induction sur le poids
en utilisant l’application suivante pour faire l’induction.

Definition 0.2.1. L’application inductive de Massey est une application du degré −1

D : F c (sE)
∆+
−−→F c (sE)◦F c (sE)

κ◦id−−−→ E ◦F c (sE) .

Appliqué à une certaine coopération µ, nous écrirons

D
(
µ
)=∑

(ζ;ζ1, . . . ,ζm ;σ) , (1)

où ζ ∈ E(m), ζi ∈F c (sE) (vi ), σ ∈Sm et v1 +·· ·+ vm est égal à l’arité de µ.

Ensuite, nous aurons besoin de l’ensemble suivant, qui fournira les indices que nous
utiliserons lors de la définition des produits.

Definition 0.2.2. Soit Γc ∈ P
¡(r ) une coopération homogène en poids. Pour chaque per-

mutation (k1, ...,kr ) ∈ Sr , nous définissons l’ensemble d’indexation Γc I (Γc , (k1, ...,kr )) par
induction sur le poids w (Γc ) de Γc comme suit.
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• Si w (Γc ) = 0, alors I (Γc , ) =;.

• Si w (Γc ) = 1, alors I (Γc , ) = {(id, (1)) , ..., (id, (r ))}.

Supposons ensuite que I (Γc , (k1, ...,kr )) ait été défini pour des coopérations jusqu’à un poids
de n, et supposons que Γc ait un poids n +1. Si

D
(
Γc)=∑

(ζ;ζ1, . . . ,ζm ;σ)

comme dans l’équation (1), et les feuilles au-dessus de chaque ζi sont étiquetées l1, ..., lvi ,
alors

I
(
Γc , (k1, ...,kr )

)
:=

m⋃
i=1

I
(
ζi ,

(
kl1 , ...,klvi

))
∪

{(
ζi ,

(
kl1 , ...,klvi

))}
.

Enfin, on peut définir les produits P -Massey sur une algèbre A.

Definition 0.2.3. Soit A une P -algèbre, Γc ∈ (
P

¡)(n)
(r ) avec n ≥ 2, et x1, ..., xr éléments

homogènes de H∗(A). Alors:

1. Le Γc -produit Massey associé à un système définissant Γc {aα} et x1, ..., xr est la classe
d’homologie du cycle

aΓc ,(1,...,r ) :=∑
(−1)γζ

(
aζ1,(σ−1(1),σ−1(2),...,σ−1(v1)), . . . , aζm ,(σ−1(v1+···+vm−1+1),...,σ−1(r ))

)
, (2)

où D (Γc ) =∑
(ζ;ζ1, . . . ,ζm ;σ), et le signe est donné par

γ=α+
m∑

i=2
(|ζi |−w(ζi ))

(
v1+···+vi−1∑

k=1
|xσ−1(k)|

)
+1, α= ∑

i< j
σ(i )>σ( j )

|xi ||x j |,

où w(ζi ) est le poids de ζi .

2. L’ensemble de produits Γc -Massey 〈x1, . . . , xr 〉Γc est le sous-ensemble (éventuellement
vide) de H∗(A) formé par les classes d’homologie résultant de tous les choix possibles
de systèmes définissant Γc {aα} associés à x1, ..., xr .

0.2.2.3 Exemples

Dans le cas des algèbres associatives et de Lie, on retrouve les exemples classiques de produits
Massey tels que définis par Massey, Allday et Retah. Les opérations secondaires que l’on
obtient sont précisément celles définies par Muro.

Un nouvel exemple dans notre article est que l’opérade de nombres duals D est concentré
dans l’arité 1 et des bicomplexes sont ses algèbres. Les produits D-Massey sont précisément
des différentiels dans la séquence spectrale associée. Nous calculons également un produit
Massey du quatrième ordre pour l’opérade de Poisson. En général, le calcul des produits
P -Massey est très difficile à faire manuellement, lorsque l’opérade P est générée par plus
d’une opération.
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0.2.2.4 Propriétés des produits P -Massey

Presque toutes les propriétés intéressantes des produits de Massey associatifs sont trans-
posées dans le cadre opéradique. Plus important encore, ce sont des invariants de type
homotopie

Theorem F. Il existe une bijection entre les ensembles de produits Massey des P -algèbres
faiblement équivalentes.

Cela implique immédiatement le corollaire suivant.

Corollary 0.2.4. Si une P -algèbre a un produit Massey non trivial, alors elle n’est pas formelle.

0.2.2.5 La séquence spectrale d’Eilenberg-Moore

Soit A une algèbre sur un opérade de Koszul P et H = H∗(A) son homologie. La P -Eilenberg–
Moore séquence spectrale, qui calcule l’homologie Quillen de A (tant que A est positivement
gradueé de type fini). Il est construit comme suit. Le complexe de chaîne opéradique P

¡(A)
admet la filtration ascendante

FpP
¡
(A) =

p⊕
n=1

P
¡
(A)(n).

Cette filtration est délimitée en dessous et exhaustive, et ainsi la séquence spectrale associée,
en tant que module gradué, converge vers l’homologie opéradique de A. Le complexe P

¡(A)
a aussi le structure d’une cofree P

¡-coalgèbre conilpotente avec comultiplication ∆, qui
respecte la filtration dans le sens où

∆
(
FpP

¡
(A)

)
⊆

p⊕
k=1

⊕
i1+···+ik=p

P
¡
(k)⊗

(
Fi1P

¡
(A)⊗·· ·⊗Fik P

¡
(A)

)
.

Cela implique en outre que chaque page de la séquence spectrale hérite d’une structure
P

¡-coalgebra, et de plus, la séquence spectrale converge comme une P
¡-coalgèbre.

La relation avec nos produits Massey est la suivante

Theorem G. Soit A une P -algèbre, et x1, . . . xr classes d’homologie de telle sorte que l’ensemble
de produits Massey 〈x1, ..., xr 〉Γc soit défini pour une coopération Γc ∈P

¡(r )(n). Alors l’élément

Γc ⊗x1 ⊗·· ·⊗xr ∈
(
P

¡
)(n)

(r )⊗H∗(A)⊗r

survit jusqu’à la page E n−1 dans la séquence spectrale P -Eilenberg–Moore, et pour x ∈
〈x1, . . . xn〉

d n−1 (
Γc ⊗x1 ⊗·· ·⊗xr

) ∈ (−1)n−2 [id⊗x] .

Pour le cas de l’opérade associative, cela retrouve un résultat connu dans la littérature.
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0.2.2.6 La relation avec P∞-structures

Classiquement, il est bien connu que les produits Massey sur une P -algèbre A ont une
relation très étroite avec les P∞-structures transférées sur l’homologie. On précise la relation
avec le théorème suivant

Theorem H. Soit A une algèbre sur un opérade de Koszul réduit P , et soit H son homologie.

Soit Γc ∈ (
P

¡)(n)
(r ), et supposons que x1, ..., xr sont des éléments homogènes r ≥ 3 de H pour

lesquels l’ensemble de produits Γc -Massey 〈x1, . . . xr 〉Γc est défini. Soit x ∈ 〈x1, . . . xr 〉Γc . Alors:

(i) Pour toute P∞-structure δ sur H quasi-isomorphe à A, nous avons

δ(n) (Γc ⊗x1 ⊗·· ·⊗xr
)= x +Φ,

où Φ ∈
n−1∑
i=1

Im
(
δ(i )

)
.

(ii) Si µ⊗ xi1 ⊗ ·· ·⊗ xil sont linéairement indépendants dans la copie correspondante de
P

¡ ⊗Sl A⊗l , où (µ, (i1, ..., il )) ∈ I (Γc ), alors il existe un choix de P∞-structure δ sur H qui
récupère x.

Dans le cas des algèbres associatives, cela récupère un théorème de Buijs, Moreno-
Fernández et Murillo.

0.2.3 Produits cotriples et algèbres strictement commutatives

Dans cet article, nous étudions le fonctionnement de la théorie des algèbres strictement
commutatives à caractéristique positive. Il convient de noter que l’opérade commutative
n’est que l’exemple le plus pratique. Nous pensons que nos méthodes devraient fonctionner
de manière plus générale.

0.2.3.1 Produits cotriple

En caractéristique 0, la théorie des modèles minimaux de Sullivan nous dit que le type
d’homotopie d’une algèbre sur une opérade est essentiellement constitué de produits Massey
accompagnés de certaines données de cohérence. Malheureusement, il n’en va pas de même
pour les caractéristiques positives, car l’action symétrique crée des données supplémentaires,
généralement appelées opérations de Steenrod. Ceux-ci ne sont visibles qu’au niveau algèbre.

C’est là qu’intervient l’idée des produits cotriples. Soit P une opérade telle que

V ∼=W =⇒ P (V ) ∼=P (W )

et soit A une P -algèbre. La cotriple résolution ResP (A), est une résolution libre de A dans
la catégorie des P -algèbres simpliciales. En filtrant ceci par la filtration squelettique, nous
obtenons une séquence spectrale cotriple naturellement associée. Les différentielles de la
séquence sont définies comme étant les opérations cotriples.
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0.2.3.2 Description alternative via les algèbres de Sullivan

Il existe une description alternative des produits cotriples avec laquelle il est plus facile de
faire des calculs et qui a du sens même lorsque P ne reflète pas les équivalences d’homotopie.

Definition 0.2.5. Soit P une opérade sur un corps et A est une P -algèbre. Un N -step Sullivan
model pour A est une algèbre semi-libre f : (P (

⊕N
i=0 Vi ),d) telle que

• l’application f |V0 : V0 → A est a est une faible équivalence d’espaces vectoriels dg. En
particulier V0 = H∗(A).

• le différentiel satisfait d(Vk ) ⊆ (P (
⊕k−1

i=0 Vi ),d).

• l’application Vk ⊕ (P (
⊕k−1

i=0 Vi ) → A est une équivalence faible pour chaque k ≤ N .

Le lien entre ce produit et les produits cotriples est donné par le théorème suivant.

Theorem I. Soit P une opérade qui reflète les équivalences d’homotopie. Soit A une P -
algèbre et fixons un choix de f : (P (

⊕N
i=0 Vi ),d)

∼−→ A a N Modèle Sullivan en étapes pour A.
Soit σ ∈ I (

⊕N
i=1 Vi ) un cocycle. Alors il existe un élément

G(σ) ∈P ◦N (H)

qui survit jusqu’au terme EN de la séquence spectrale P -cotriple, et

dN−1 ([G(σ])) ∈ (−1)N−2 [
id⊗H∗( f (σ))

]
.

0.2.3.3 Opérations cotriples secondaires pour les algèbres commutatives

A partir de la définition précédente, on peut vérifier ce qui suit.

Proposition 0.2.6. Tous les produits cotriples primitifs secondaires sur une dg-algèbre commu-
tative A sur Fp sont des combinaisons linéaires de

• Produits Massey classiques.

• Opérations Frobenius secondaires de type 1

• Opérations Frobenius secondaires de type 2.

Ces deux opérations supplémentaires qui apparaissent peuvent être utilisées pour con-
struire un certain nombre de contre-exemples au comportement de caractéristique 0. Plus
particulièrement, il existe des exemples d’algèbres commutatives qui sont formelles sur Q
mais pas sur Fp . Un exemple d’algèbre qui a une structure de pouvoir divisée sur sa coho-
mologie n’est néanmoins pas quasi-isomorphe à une algèbre de puissance divisée . Enfin
nous avons le contre-exemple suivant qui répond à une question de Campos, Petersen,
Robert-Nicoud et Wierstra.

Theorem J. Il existe A et B deux algèbres dg commutatives sur un corps de caractéristique
deux qui peuvent être distinguées via leur opération de Frobenius de type 1. Néanmoins, il
existe une algèbre associative C telle qu’il existe un zigzag d’équivalences associatives faibles

A
∼←−C

∼−→ B
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0.2.3.4 Rectifiabilité

Enfin, nous avons entrepris de répondre à la question suivante. On dit qu’une E -algèbre est
rectifiable si elle est faiblement équivalente à une algèbre strictement commutative. Dans la
caractéristique p, toutes les algèbres E ne sont pas rectifiables, il y a des obstructions données
par les opérations de Steenrod et des opérations correspondant à des syzygies entre elles.

Definition 0.2.7. Soit A une E∞-algèbre sur Fp . Alors les opérations Steenrod supérieures
disparaissent de manière cohérente si pour chaque (ou n’importe quelle) résolution de Sullivan
(E (

⊕∞
i=0 Vi ),d) pour A, il existe un diviser Vi = Xi

⊕
Yi , avec X0 =V0 ; tel que (Sym(

⊕∞
i=0 Xi ),d)

est une algèbre de Sullivan et le noyau de

(E (
∞⊕

i=0
Vi ),d) → (Sym(

∞⊕
i=0

Xi ),d)

est acyclique.

Les cocycles apparaissant dans le noyau représentent les opérations de Steenrod. Par
exemple, le noyau du composant E (V0) → Sym(V0) sont précisément les opérations de Steen-
rod et la définition d’une algèbre de Sullivan implique immédiatement que ces cocycles
supplémentaires sont tués par Y1.

Theorem K. Soit A une E∞-algèbre sur Fp . Alors A est rectifiable si et seulement si ses
opérations Steenrod supérieures disparaissent de manière cohérente.

0.2.4 Rapprochement du complexe de cochaînes singulières avec des al-
gèbres commutatives

Dans cette section, nous étudions une généralisation de l’algèbre de Sullivan des fonctions
polynomiales par morceaux foncteur APL en caractéristique positive.

0.2.4.1 Les formes p-adiques en caractéristique positive

Le foncteur APL de Sullivan ne modélise pas les cochaînes singulières en caractéristique posi-
tive. Le problème est le problème habituel avec les algèbres commutatives en caractéristique
positive, à savoir que le foncteur Sym(−) n’envoie pas d’équivalences faibles de complexes
de cochaînes aux équivalences faibles d’algèbres commutatives. Pour résoudre ce problème,
nous passons aux algèbres de puissances divisées et travaillons avec la généralisation suivante
du foncteur APL .

Ω∗
n =

(
Ẑp〈x0, . . . xn〉⊗Λ (d x0, . . . ,d xn)(
x0 +·· ·+xn −p,d x0 +·· ·d xn

)) , |xi | = 0, |d xi | = 1.

On peut alors étendre cette construction par extension Kan left pour produire une dg-algèbre
strictement commutative associée à tout ensemble simplicial X . Pour des raisons qui ap-
paraîtront clairement, nous appellerons cette construction les formes p-adiques sur X et la
notons Ω∗ (X ).

Le lecteur doit noter qu’il y a ici un changement clé ; au lieu de quotient par x0+·· ·+xn = 1,
nous quotient par x0 +·· ·+ xn = p. Cela jouera un rôle important dans le développement
ultérieur de la théorie.
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0.2.4.2 La cohomologie des formes p-adiques sur X

Il s’avère que les formes p-adiques sur X calculent la cohomologie sur X . Explicitement, nous
avons le théorème suivant.

Theorem L. Soit X un ensemble simplicial. L’anneau de cohomologie deΩ∗ (X ) est isomorphe
à la cohomologie singulière de X . En d’autres termes, on a un isomorphisme d’anneau

H∗ (
Ω∗ (X )

)∼= H∗ (
X , Ẑp

)
.

0.2.4.3 Relation avec le complexe de chaînes singulières

La non-disparition de la zéroième opération de Steenrod P 0 garantit qu’il est impossible
de produire une algèbre strictement commutative faiblement équivalente au complexe de
cochaînes singulières. On ne peut donc qu’espérer produire différents types d’approximation.
L’approximation calculée par Ω∗ (X ) est la suivante.

Definition 0.2.8. Soit X un ensemble simplicial. Nous définissons l’p-algèbre de cochaîne
singulière décalée D∗ (

X , Ẑp
)

comme étant la sous-algèbre suivante des cochaînes singulières
C∗ (

X , Ẑp
)
.

Dn (X ) =
〈

p iσ : for σ ∈C n (
X , Ẑp

)
et

{
j e = n si dσ= 0.

j e = n +1 sinon.

〉

Le différentiel et la structure E sont ceux induits par ceux sur C∗ (
X , Ẑp

)
.

Notre théorème dit explicitement que

Theorem M. Pour chaque ensemble simplicial X , les E -algèbres Ω∗ (X ) et D∗ (
X , Ẑp

)
sont

faiblement équivalents .

0.2.4.4 Applications aux produits Massey et formalité

Les formes p-adiques de Rham nous permettent de généraliser rapidement de nombreuses
théories à partir d’un cadre rationnel. Ils contiennent notamment des informations sur les
produits Massey.

Theorem N. Supposons queσ ∈ H∗ (X ,Q) soit le produit Massey supérieur de 〈x1, x2, . . . , xn〉 ∈
H∗ (APL (X ) ,Q). Alors il existe un n > 0 tel que pnσ ∈ H∗ (

X , Ẑp
)

est le produit Massey
supérieur de 〈pn x1, pn x2, . . . , pn xn〉 ∈ H∗ (

APL (X ) , Ẑp
)

calculé en Ω∗ (X ) .

De plus, lorsque X est rationnellement formel, les formes p-adiques de Rham sont presque
toujours formelles. Explicitement, nous obtenons le résultat suivant.

Theorem O. Soit X un ensemble simplicial fini tel que APL (X ) soit formel surQ. Pour tous
les nombres premiers sauf un nombre fini, Ω∗ (X ) est formel sur Ẑp en tant que dg-algèbre
dg-commutative.
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0.2.5 Comparaison de la catégorie d’homotopie des algèbres E∞ et des
algèbres commutatives

Cette section est la plus courte de la thèse. Dans ce document, en travaillant dans la carac-
téristique 2, nous exposons un exemple explicite de deux algèbres commutatives A et B qui
ne sont pas faiblement équivalentes en tant qu’algèbres commutatives mais sont faiblement
équivalentes en tant qu’E∞-algèbres.

Pour être plus précis, A et B peuvent être distingués via un produit cotriple de troisième
ordre. L’opération en question est essentiellement l’opération Frobenius itérée deux fois.
Cependant, cette opération a une plus grande indétermination dans la catégorie des E∞-
algèbres que dans les algèbres commutatives. Cela signifie que nous pouvons trouver une
E∞-algèbre C telle qu’il y ait un zigzag d’E∞-algèbres

A
∼←−C

∼−→ B

Cela démontre que la catégorie d’homotopie des algèbres commutatives ne s’intègre pas dans
la catégorie d’homotopie des E∞-algèbres. En ce sens, les E∞-algèbres ne généralisent pas les
algèbres commutatives.

0.2.6 Un théorème supérieur de Hochschild-Konstant-Rosenberg et la
conjecture de Deligne

Dans ce chapitre, nous étudions l’homologie supérieure de Hochschild dans la théorie de
l’homotopie rationnelle, définie pour la première fois par Pirashvili. Nous prouvons un
théorème HKR dans ce contexte, qui rend explicite le lien entre de telles déclarations et la
formalité. Nous utilisons ensuite cette affirmation pour construire une structure d’algèbre
n +1-Poisson sur le complexe cotangent, généralisant le produit de tasse sur l’homologie de
Hochschild.

0.2.6.1 Le théorème classique de Hochschild-Konstant-Rosenberg

Le théorème classique de HKR énonce ce qui suit.

Theorem 0.2.9. Soit k un corps de caractéristique 0 et soit A une k-algèbre commutative qui est
essentiellement de type fini et lisse sur k. Il existe alors un isomorphisme d’algèbres k graduées

Φ : H H∗ (A, A)
∼−→Ω∗ (A,k)

entre l’homologie de Hochschild et le module des différentielles de Kähler.

Ce théorème peut être généralisé dans plusieurs directions. Tout d’abord, il y a des
déclarations au niveau de la chaîne. L’hypothèse de lissage, qui est utilisée principalement
comme condition de cofibrancie dans la preuve, peut être abandonnée en faveur d’un travail
avec le complexe cotangent, qui est essentiellement une version dérivée.
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0.2.6.2 Généraliser le complexe de chaînes de Hochschild

Comme son nom l’indique, l’homologie de Hochschild est l’homologie d’un certain complexe
de chaîne appelé complexe de chaîne de Hochschild. Pirashvili a montré qu’une de ces
façons de construire ledit complexe consiste à utiliser un produit tensoriel dérivé entre un
ensemble simplicial et une E∞-algèbre. Cela vient fondamentalement du fait que la catégorie
des E∞-algèbres est enrichie sur des ensembles simpliciaux. Notre première proposition est
que cette observation peut être poussée plus loin.

Theorem P. Soient X ∈ sSet et A ∈ E −alg. Alors il existe une faible équivalence de E -algèbres
entre X ⊠ A et C∗ (X )⊗L

E
A . Autrement dit, le diagramme

sSet×E −alg E −alg

E −coalg×E −alg

⊠

C∗×i d ⊗L
E

fait la navette jusqu’à l’homotopie.

0.2.6.3 Un théorème de Hochschild-Konstant-Rosenberg supérieur

Dans ce contexte, notre version du théorème de Hochschild-Konstant-Rosenberg est la suiv-
ante.

Theorem Q. Soit X un ensemble formel simplicial de type fini en chaque degré. Soit A un
CDGA. Supposons que

(
Sym(V ) ,d

)
soit une résolution cofibrante et quasi-libre de A. Il existe

alors une équivalence naturelle des complexes de chaînes

A⊠X
∼−→ Sym(V ⊗H∗ (X ) ,dX )

Nous appelons Sym(V ⊗H∗ (X ) ,dX ) le complexe tangent supérieur en forme de X de A ∼=(
Sym(V ) ,d

)
. De plus cette équivalence est fonctionnelle par rapport aux applications formelles.

Lorsque X = S1, on retrouve le théorème HKR classique.

0.2.6.4 Une structure de coalgèbre n-Poisson sur la cohomologie des suspensions n-fold

Nous définissons d’abord une notion de cogèbre qui prend en compte l’application diagonale
sur les espaces. Puis, en utilisant cette notion de cogèbre, nous prouvons le résultat suivant.

Theorem R. Pour Σn X une suspension n-fold, la dg-algèbre C∗(Σn X ) est équipée d’une
structure Poisn-coalgebra. Cette structure s’étend au complexe cotangent et a un cobracket
trivial sur l’homologie de Hochschild.

0.2.6.5 Une structure complexe n +1-cotangente sur l’homologie de Hochschild

Dans notre théorème final, nous construisons une solution à la conjecture de Deligne.

Theorem S. Soit X =ΣnY une suspension n-fold. Alors le complexe cotangent(
Sym(H∗ (X )⊗V ) ,dX

)
est, à homotopie cohérente près, une cogèbre sur Poisn
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0.2.6.6 Annexe : Un opérade de coendomorphisme

En annexe, nous construisons le gadget potentiellement utile d’un modèle explicite pour
l’opérade de coendomorphisme d’une algèbre coassociative dans la ∞-catégorie des P -
algèbres .
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Introduction (English version)

0.3 Introduction: a rather irreverent and incomplete account
of the life and times of algebraic topology

In the beginning, Gauss2 created topological spaces and manifolds. Now, it subsequently
turned out that this may have been jumping the gun a bit, because manifolds are beautiful,
mysterious and very, very complicated and topological spaces are often just pathological. Try
finding an exotic 4-sphere or wrestling with a space-filling curve. Eventually something had
to give, and most sensible people decided to study compact, Hausdorff topological spaces
with the homotopy type of a CW-complex.

The main goal seemed rather humble. It would be nice just to be able to tell them apart.
The trouble is that topological spaces are masters of disguise and can look both very similar
when they are different and, as the old joke known to every maths undergrad about topologists,
bagels and coffee cups suggests, extremely different even when the same. This meant that
people needed to come up with global geometric invariants. Starting with Enrico Betti in 1871,
Henri Poincaré and Camille Jordan, people stepped up to the plate and invented not one but
two of them - cohomology and homotopy groups. Roughly speaking, these are groups that
count the number of holes in your object in two slightly different ways.

At first, everything was brilliant and the future seemed bright3. But cracks quickly started
to emerge. Firstly, it was noticed that cohomology wasn’t a complete invariant. For example,
it can’t tell the difference between S2 ∨S1 ∨S1, two circles and a sphere glued together, and a
torus, which makes the aforementioned undergrad joke slightly more embarrassing. Secondly,
in 1931, Heinz Hopf discovered the Hopf fibration, a nontrivial map from S3 → S2 built from
decomposing S3 into a monstrous union of interlocked circles indexed by S2 , demonstrating
conclusively the equation

cohomology ̸= homotopy

and, incidentally, also demonstrating the futility of some of my previous analogies (it is rather
disobliging to think of the Hopf fibration as a type of hole). Hopf opened Pandora’s box, which

2and many others.
3for the subject that is, not so much for algebraic topologists who would have been out of a job.
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turned out to be full of such maps, each more progressively horrifying than the last. Like the
ghost of Anne Boleyn, these have been terrifying topologists for generations at this point. We
still don’t know the homotopy groups of spheres, but it’s no surprise that our best tools are
spectral sequences.

The first problem was easier to deal with. The answer was to add more stucture. Alexander,
Čech, Whitney and Eilenberg observed that the diagonal map X → X ×X actually carried a
lot of structure, after you flattened it to make it work algebraically. In particular, it turned the
cohomology groups

⊕∞
i=0 H i (X ) into a commutative ring. One problem: this still wasn’t a

complete invariant of space. While it can at least deal with the previous example, it still can’t
tell

(
CP∞×S1

)
/
(
{x0}×S1

)
from CP∞×S3.

In 1958, Massey discovered that the first higher invariant, the Massey triple product.
Computationally the idea is pretty simple. Suppose you have a,b,c ∈⊕∞

i=0 H i (X ) such that
ab = 0 and bc = 0. Then on the cochain level, this happens for a reason, you have āb̄ = du
and b̄c̄ = d v . Then, up to sign, āv +uc̄ , is a cocycle and represents something in cohomology.
This something is not well-defined up to homotopy, but the failure is predictable, and an
invariant of spaces (in fact, of differential graded algebras) can be extracted from it. Massey
used it to show that the Borromean rings are linked. If you recall that the cup product can tell
if two rings are pairwise interlinked, that should give you the intuition behind what it does. It
actually just the first in an infinite family of invariants for dgas that can be extracted this way.

The idea of Massey products found final fruition in the pioneering work of Quillen and
Sullivan in rational homotopy theory. Sullivan showed that, given a simplicial set X , one
can build a commutative graded algebra APL (X ) over the rationals, modelled on de Rham
forms, that captures the complete homotopy type of finite type, nilpotent, rational spaces.
Essentially, all the information contained in these models can be summed up as being Massey
products along with coherence information. This approach is incredibly elegant and efficient;
one has unique minimal models for spaces that allows one to detect homotopy equivalences
of spaces as isomorphisms of algebras.

At the same time, Stasheff, Boardman-Vogt and May were studying the same picture from
a slightly different angle. They were trying to understand the structure of that of iterated loop
spaces ie. for k-connected X , k ≥ n, the mapping spaceΩn X =Map(Sn , X ). In particular, they
wanted to compute H∗(Ωn X ) given H∗(X ) and some structure. To do this, May, Boardman-
Vogt and others developed the notion of an operad. For an undergrad in mathematics, an
operad can be thought of as a bit like a group: it abstracts away the properties of some kind
of multiplicative structure like an associative or Lie algebra. Then you have algebras, which
are a bit like group representations in this bad analogy, they are concrete examples of objects
equipped with such a multiplication. Using this new idea, he was able to prove his celebrated
recognition theorem: Every grouplike space is an algebra over the little n-discs operad if and
only if it is an n-fold loop space. Algebras over the little n-discs operad are also called En-
algebras. This is because they are not commutative on the nose, but are up to homotopy. And
those homotopies are commutative up to homotopy and... (repeat this sentence another n−2
times, if you have the patience).

The notion of an operad was applied immediately more generally. In particular, it suddenly
made it possible to talk about algebras that were commutative up to coherent homotopy,
objects now called E∞-algebras. Most importantly, Mandell showed that this is precisely the
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correct notion that describes the cochain-level cup product on spaces and Fresse and Berger
gave explicit combinatorial models for it. In 2006, in a result that can only be described as
stunning, Mandell went one step further and solved algebraic topology4. He showed that the
homotopy type of the singular cochain complex as an E∞-algebra is a complete homotopy
invariant of finite type, nilpotent spaces. Topology thus evaporates, leaving only higher
algebra in its wake. The golden age of algebraic topology ended and the era of homotopy
theory began.

With that rather dramatic finishing thought, we move a more technical discussion of the
contents of this thesis.

0.4 Synopsis of the thesis

0.4.1 Corecognition for suspensions

In this chapter, which is based on an article [33] which is joint work with Moreno-Fernández
and Wierstra, we prove a recognition principle for iterated suspensions. The main result is the
following, where Cn is the little n-discs operad, which is a model for the En-operad.

Theorem A. Every n-fold suspension is a Cn-coalgebra, and if a pointed space is a Cn-coalgebra
then it is homotopy equivalent to an n-fold suspension.

In particular, the reader should note that our proof methods are not dual to May’s and
most of our statements are slightly stronger, generally giving homotopy equivalence rather
than weak equivalence.

0.4.1.1 Background

The main piece of background to the result is May’s recognition principle [66], which states
that a grouplike space is an En-algebra with respect to the Cartesian product × and only if it
has the weak homotopy type of an n-fold loop space. As an intermediate step in his proof,
May also had an approximation theorem, which states that the monad associated to the little
n-cubes operad is weakly equivalent to the monad ΩnΣn , where Ω is the loop space functor
and Σ is the suspension functor.

0.4.1.2 Coalgebras over topological operads: approach 1

We begin by defining the notion of coalgebra over an operad. The context is that we wish to
work in the category of pointed topological spaces (Top∗,∨) equipped with the categorical
coproduct ∨. In (Top∗,∨), every object has an associated operad, given by

CoEnd(X )(n) =MapTop∗
(
X , X ∨n)

The symmetric group acts by permutation of factors in the wedge sum and the operadic
composition comes from the function composition ( f ; f1, f2, . . . fn) 7→ (

f1 ∨·· ·∨ fn
)◦ f . Let P

be a (unpointed) operad in topological spaces. Then a coalgebra over P is a morphism of

4only a slight exaggeration
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operads P → CoEnd(X ). This fits very well with the common sense definition of a coalgebra
being a collection of maps

△n : P (n)×X → X ∨n .

0.4.1.3 Coalgebras over the little n-cubes operad

The main example of the previous definition is n-fold suspensions. In particular, n-spheres
are equipped with such a structure via the pinch map, and this can be generalised to n-fold
suspensions. The precise statement is as follows.

Theorem B. The n-fold reduced suspension of a pointed space X is a Cn-coalgebra. More
precisely, there is a natural and explicit operad map

∇ : Cn →CoEndΣn X ,

where CoEndΣn X is the coendomorphism operad of Σn X . The map ∇ encodes the homotopy
coassociativity and homotopy cocommutativity of the classical pinch map Σn X →Σn X ∨Σn X .
In particular, the pinch map is an operation associated to an element of Cn(2). Furthermore, for
any based map X → Y , the induced map Σn X →ΣnY extends to a morphism of Cn-coalgebras.

0.4.1.4 Coalgebras over topological operads: approach 2

The second approach to coalgebras is to define a comonad associated to a unitary operad
(P ,∗). The comonad then has a naturally associated co-Eilenberg-Moore category, and one
can define coalgebras to be precisely the elements of this category.

To make this precise, let (P ,∗) be a unitary operad, where ∗ ∈P (0) is the unit. We shall
define the comonad to be a subspace of the following construction.

Tot(P , X ) := ∏
n≥0

MapSn

(
P (n), X ∨n)

.

To define the subspace, we need the restriction operators, given by inserting the unique point
∗ ∈P (0) at the i -th component:

P (n) P (n −1)

θ γ (θ; id, ...,∗, ..., id) .

di

We also need the wedge collapse maps, which are given by collapsing the i -th factor in the
wedge as follows:

X ∨n X ∨(n−1)

(x1, ..., xn) (x1, ..., x̂i , ..., xn).

πi

Let P be a unitary operad in Top. Now the endofunctor in pointed spaces

CP :Top∗ Top∗

X CP (X ) ,
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where

CP (X ) = {
α= (

f1, f2, ...
) ∈ Tot(P , X ) | πi fn = fn−1di for all n ≥ 2 and 1 ≤ i ≤ n

}
is the subspace of Tot(P , X ) formed by those sequences

(
f1, f2, ...

)
that commute with the

restriction operators and wedge collapse maps.

To produce the comonadic structure on this object, it is necessary to analyse it a little. It
turns out that all points α= (

f1, f2, ...
) ∈CP (X ) are determined by extending the f1 : P (1) → X

component in a unique way5. So one can define the comonadic structure by defining a

△( f1) : P (1) →Map(P (1), X )

coming from the adjoint of the operadic composition P (1)×P (1)
γ−→P (1).

0.4.1.5 Coalgebras over topological operads: conclusions

The reader should not be surprised to note that the two categories of coalgebras described
above coincide. There is an immediate important consequence of the following obervation.
Firstly, using the latter definition, one can show that if P (1) =∗, then the only coalgebra over
P is the point ∗. In particular, there are no nontrivial strictly cocommutative or coassociative
coalgebras in spaces and therefore no analogue of the Moore loop space for suspensions.
This (among other complexities relating to extensive use of quasi-fibrations) makes May’s
approach to the recognition principle non-dualisable.

0.4.1.6 The coapproximation theorem

An intermediate result that is interesting in its own right is the following, which is dual to
May’s approximation theorem. May’s version of this result was key to the computation of the
cohomology of iterated loop spaces, and we hope this result may hold similar promise. It is
proven by directly constructing the desired homotopy via geometric arguments.

Theorem C. For every n ≥ 1, there is a natural morphism of comonads

αn :ΣnΩn −→Cn .

Furthermore, for every pointed space X , there is an explicit natural homotopy retract of
pointed spaces

ΣnΩn X Cn(X )

In particular, αn(X ) is a weak equivalence.
5Though the reader should be warned that not all maps f1 : P (1) → X extend to such an α
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0.4.1.7 The recognition theorem

The chapter contains two recognition theorems. The first is a recognition principle over the
ΣnΩn-comonad. This is dual to Beck’s recognition principle.

Theorem D. Let X be aΣnΩn-coalgebra. Then X is naturally isomorphic to the n-fold reduced
suspension of a space Pn(X ) which can be computed as the equalizer of the following pair of
maps:

Ωn X ΩnΣnΩn X .
Ωnγ

ηΩn X

Here, η is the unit of the (Σn ,Ωn) adjunction, and γ is the ΣnΩn-coalgebra structure map of X .

The second, which is deduced from it via categorical arguments, is dual to May’s recogni-
tion principle.

Theorem E. Let X be a Cn-coalgebra. Then there is a pointed space Γn(X ), naturally associ-
ated to X , together with a weak equivalence of Cn-coalgebras

ΣnΓn(X ) X ,≃

which is a retract in the category of pointed spaces. Therefore, every Cn-coalgebra has the
homotopy type of an n-fold reduced suspension.

0.4.2 Koszul duality and Massey products

In this chapter, which is based on an article [31] with Moreno-Fernandez, we generalise
Massey products to arbitary Koszul operads and compute some examples.

0.4.2.1 Background

Massey triple products were introduced by Massey in 1958 [60]. Their main purpose is in
rational homotopy theory, where they detect and quantify the non-formality of differential
graded algebras. They are the first in an infinite sequence of higher operations that perform
the same function. Similar operations have been defined for Lie algebras by Allday and Retah
[2]. Massey triple products were generalised to arbitary quadratic operads by Muro [69].

0.4.2.2 Higher P -Massey products

Massey products for a Koszul operad P are in correspondence with cooperations in the
Koszul dual cooperad P

¡. The precise correspondence is somewhat technical. First, recall
that P

¡ is naturally weight-graded. We shall define Massey products by induction on weight
using the following map to do the induction.

Definition 0.4.1. The Massey inductive map is the degree −1 map

D : F c (sE)
∆+
−−→F c (sE)◦F c (sE)

κ◦id−−−→ E ◦F c (sE) .

Applied to some cooperation µ, we shall write

D
(
µ
)=∑

(ζ;ζ1, . . . ,ζm ;σ) , (3)

where ζ ∈ E(m), ζi ∈F c (sE) (vi ), σ ∈Sm and v1 +·· ·+ vm is equal to the arity of µ.
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Next, we shall need the following set, which shall provide the indices that we shall use
when defining the products.

Definition 0.4.2. LetΓc ∈P
¡(r ) be a weight-homogeneous cooperation. For each permutation

(k1, ...,kr ) ∈ Sr , we define the Γc -indexing set I (Γc , (k1, ...,kr )) by induction on the weight
w (Γc ) of Γc as follows.

• If w (Γc ) = 0, then I (Γc , ) =;.

• If w (Γc ) = 1, then I (Γc , ) = {(id, (1)) , ..., (id, (r ))}.

Assume next that I (Γc , (k1, ...,kr )) has been defined for cooperations up to weight n, and
suppose Γc is of weight n +1. If

D
(
Γc)=∑

(ζ;ζ1, . . . ,ζm ;σ)

as in Equation (2.5), and the leaves on top of each ζi are labeled l1, ..., lvi , then

I
(
Γc , (k1, ...,kr )

)
:=

m⋃
i=1

I
(
ζi ,

(
kl1 , ...,klvi

))
∪

{(
ζi ,

(
kl1 , ...,klvi

))}
.

Finally, we can define the P -Massey products on an algebra A.

Definition 0.4.3. Let A be a P -algebra, Γc ∈ (
P

¡)(n)
(r ) with n ≥ 2, and x1, ..., xr homogeneous

elements of H∗(A). Then:

1. The Γc -Massey product associated to a Γc -defining system {aα} and x1, ..., xr is the
homology class of the cycle

aΓc ,(1,...,r ) :=∑
(−1)γζ

(
aζ1,(σ−1(1),σ−1(2),...,σ−1(v1)), . . . , aζm ,(σ−1(v1+···+vm−1+1),...,σ−1(r ))

)
, (4)

where D (Γc ) =∑
(ζ;ζ1, . . . ,ζm ;σ), and the sign is given by

γ=α+
m∑

i=2
(|ζi |−w(ζi ))

(
v1+···+vi−1∑

k=1
|xσ−1(k)|

)
+1, α= ∑

i< j
σ(i )>σ( j )

|xi ||x j |,

where w(ζi ) is the weight of ζi .

2. The Γc -Massey product set 〈x1, . . . , xr 〉Γc is the (possibly empty) subset of H∗(A) formed
by the homology classes arising from all possible choices of Γc -defining systems {aα}
associated to x1, ..., xr .

0.4.2.3 Examples

In the cases of associative and Lie algebras, we recover the classical examples of Massey
products as defined by Massey, and Allday and Retah. The secondary operations that we
obtain are precisely those defined by Muro.

A novel example in this chapter is the dual numbers operad D is concentrated in arity 1,
and has bicomplexes as algebras over it. The D-Massey products are precisely differentials
in the associated spectral sequence. We also compute a fourth order Massey product for the
Poisson operad. In general, computing P -Massey products is very difficult to do by hand,
when the operad P is generated by more than one operation.
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0.4.2.4 Properties of P -Massey products

The P -Massey products have all the properties that you would expect. Most importantly,
they are invariants of homotopy-type

Theorem F. There is a bijection between the Massey product sets of weakly-equivalent P -
algebras.

This immediately implies the following corollary.

Corollary 0.4.4. If a P -algebra A has a nontrivial Massey product, then it is not formal. That
is to say, A is not quasi-isomorphic to its homology (viewed as a P -algebra with the obvious
induced structure) as a P -algebra.

0.4.2.5 The Eilenberg-Moore spectral sequence

Let A be an algebra over a Koszul operad P and H = H∗(A) be its homology. There is a
canonical homology theory associated to algebras over an operad known as Quillen homology.
The P -Eilenberg–Moore spectral sequence, that computes the Quillen homology of A (as
long as A is positively graded of finite type). It is constructed as follows. The operadic chain
complex P

¡(A) admits the ascending filtration

FpP
¡
(A) =

p⊕
n=1

P
¡
(A)(n).

This filtration is bounded below and exhaustive, and so the associated spectral sequence, as a
graded module, converges to the operadic homology of A. The complex P

¡(A) also has the
structure of a conilpotent cofree P

¡-coalgebra with comultiplication ∆, which respects the
filtration in the sense that

∆
(
FpP

¡
(A)

)
⊆

p⊕
k=1

⊕
i1+···+ik=p

P
¡
(k)⊗

(
Fi1P

¡
(A)⊗·· ·⊗Fik P

¡
(A)

)
.

This further implies that each page of the spectral sequence inherits a P
¡-coalgebra structure,

and furthermore, the spectral sequence converges as a P
¡-coalgebra.

The relationship with our Massey products is the following

Theorem G. Let A be a P -algebra, and x1, . . . xr homology classes such that the Massey
product set 〈x1, ..., xr 〉Γc is defined for a cooperation Γc ∈P

¡(r )(n). Then the element

Γc ⊗x1 ⊗·· ·⊗xr ∈
(
P

¡
)(n)

(r )⊗H∗(A)⊗r

survives to the E n−1 page in the P -Eilenberg–Moore spectral sequence, and for x ∈ 〈x1, . . . xn〉

d n−1 (
Γc ⊗x1 ⊗·· ·⊗xr

) ∈ (−1)n−2 [id⊗x] .

For the case of the associative operad, this recovers a known result in the literature.
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0.4.2.6 The relationship with P∞-structures

Classically, it is well-known that Massey products on a P -algebra A have a very close relation-
ship with the transferred P∞-structures on the homology. We make precise the relationship
with the following theorem

Theorem H. Let A be an algebra over a reduced Koszul operad P , and let H be its homology.

Let Γc ∈ (
P

¡)(n)
(r ), and assume that x1, ..., xr are r ≥ 3 homogeneous elements of H for which

the Γc -Massey product set 〈x1, . . . xr 〉Γc is defined. Let x ∈ 〈x1, . . . xr 〉Γc . Then:

(i) For any P∞ structure δ on H quasi-isomorphic to A, we have

δ(n) (Γc ⊗x1 ⊗·· ·⊗xr
)= x +Φ,

where Φ ∈
n−1∑
i=1

Im
(
δ(i )

)
.

(ii) If µ⊗ xi1 ⊗ ·· · ⊗ xil are linearly independent in the corresponding copy of P
¡ ⊗Sl A⊗l ,

where (µ, (i1, ..., il )) ∈ I (Γc ), then there is a choice of P∞ structure δ on H which recovers
x.

In the case of associative algebras, this recovers a theorem of Buijs, Moreno-Fernández
and Murillo [16].

0.4.3 Cotriple products and strictly commutative algebras

In this chapter, which is based on the recently uploaded ArXiV prprint [29], we study how
the theory of strictly commutative algebras in positive characteristic. This is merely the most
practical example. We believe our methods should work more generally.

0.4.3.1 Cotriple products

In characteristic 0, Sullivan’s theory of minimal models tells us that the homotopy type of an
algebra over an operad essentially consists of Massey products along with some coherence
data. Unfortunately, the same is not true in positive characteristic because the symmetric
action creates extra data, which are usually called Steenrod operations. These are only visible
at the algebra level.

This is where the idea of cotriple products comes in. Let P be an operad such that

V ∼=W =⇒ P (V ) ∼=P (W )

and let A be a P -algebra. The cotriple resolution ResP (A), is a free resolution of A in the
category of simplicial P -algebras. Filtering this by the skeletal filtration, we obtain a naturally
associated cotriple spectral sequence. The differentials in the sequence are defined to be the
cotriple operations.
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0.4.3.2 Alternative description via Sullivan algebras

There is an alternative description of cotriple products that is easier to do computations with
and which makes sense even when P does not reflect homotopy equivalences.

Definition 0.4.5. Let P be an operad over a field and A is a P -algebra. An N -step Sullivan
model for A is a semi-free algebra f : (P (

⊕N
i=0 Vi ),d) such that

• the map f |V0 : V0 → A is a is a weak equivalence of dg-vector spaces. In particular
V0 = H∗(A).

• the differential satisfies d(Vk ) ⊆ (P (
⊕k−1

i=0 Vi ),d).

• the map Vk ⊕ (P (
⊕k−1

i=0 Vi ) → A is a weak equivalence for each k ≤ N .

The connection between this and cotriple products is given by the following theorem.

Theorem I. Let P be an operad that reflects homotopy equivalences. Let A be an P -algebra
and fix a choice of f : (P (

⊕N
i=0 Vi ),d)

∼−→ A a N -step Sullivan model for A. Let σ ∈ I (
⊕N

i=1 Vi )
be a cocycle. Then there exists an element

G(σ) ∈P ◦N (H)

which survives to the EN -term of the P -cotriple spectral sequence, and

dN−1 ([G(σ])) ∈ (−1)N−2 [
id⊗H∗( f (σ))

]
.

0.4.3.3 Secondary cotriple operations for commutative algebras

From the previous definition, one has the following description of cotriple products for strictly
commutative algebras.

Proposition 0.4.6. All secondary primitive cotriple products on a commutative dg-algebra A
over Fp are linear combinations of

• classical Massey products.

• Type 1 secondary Frobenius operations

• Type 2 secondary Frobenius operations.

See Subsection 3.4.1 for the precise definition of the Frobenius operations. These extra
two operations that are appear can be used to construct a number of counterexamples to
characteristic 0 behaviour. Most notably, there examples of commutative dg-algebras that are
formal overQ but not Fp and an example of an algebra that has a divided power structure on its
cohomology is nonetheless not quasi-isomorphic to a divided power algebra. Finally we have
the following counterexample that answers a question of Campos, Petersen, Robert-Nicoud
and Wierstra [17, Section 0.3].

Theorem J. There exists A and B be two commutative dg algebras over a field of characteristic
two which may be distingushed via their type 1 Frobenius operation. Nonetheless, there exists
an associative algebra C such that there is a zig-zag of associative weak equivalences

A
∼←−C

∼−→ B
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0.4.3.4 Rectifiability

Finally, we set out to answer the following question. We say that an E -algebra is rectifiable
if it is weakly equivalent to a strictly commutative algebra. In characteristic p, not every
E -algebra is rectifiable, there are obstructions given by Steenrod operations and operations
ccrresponding to syzygies between them.

Definition 0.4.7. Let A be an E∞-algebra over Fp . Then the higher Steenrod operations vanish
coherently if for every (or any) Sullivan resolution (E (

⊕∞
i=0 Vi ),d) for A, there exists a splitting

Vi = Xi
⊕

Yi , with X0 =V0; such that (Sym(
⊕∞

i=0 Xi ),d) is a Sullivan algebra and the kernel of

(E (
∞⊕

i=0
Vi ),d) → (Sym(

∞⊕
i=0

Xi ),d)

is acyclic.

The cocycles appearing in the kernel represent Steenrod operations. For example, the
kernel of the E (V0) → Sym(V0) component are precisely the Steenrod operations and the
definition of a Sullivan algebra immediately implies that these extra cocycles are killed by Y1.

Then we are able to prove the expected but satisfying following result.

Theorem K. Let A be an E∞-algebra over Fp . Then A is rectifiable if and only if its higher
Steenrod operations vanish coherently.

0.4.4 Comparing the homotopy category of E∞-algebras and commutative
algebras

This section is the shortest of the thesis. In it, working in characteristic 2, we exhibit an explicit
example of two commutative algebras A and B that are not weakly equivalent as commutative
algebras but are weakly equivalent as E∞-algebras.

To be more specific, A and B can be distingushed via a third order cotriple product.
The operation in question is essentially the Frobenius operation iterated twice. However,
this operation has greater indeterminacy in the category of E∞-algebras than commutative
algebras. This means that we can find an E∞-algebra C such that there is a zig-zag of E∞-
algebras

A
∼←−C

∼−→ B

The reader should note the similarity of this argument with the proof of Theorem 3.4.15.

This demonstrates that that the homotopy category of commutative algebras does not em-
bed into the homotopy category of E∞-algebras. In this sense, E∞-algebras do not generalise
commutative algebras.

0.4.5 Approximating the singular cochains complex with commutative
algebras

In this section, we study a generalisation of Sullivan’s algebra of piecewise polynomial func-
tions functor APL in positive characteristic.
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0.4.5.1 The p-adic forms in positive characteristic

Sullivan’s APL-functor does not model the singular cochains in positive characteristic. The
problem is the usual one with commutative algebras in positive characteristic, namely that the
functor Sym(−) does not send weak equivalences of cochain complexes to weak equivalences
of commutative algebras. To fix this, we pass to divided power algebras and work with the
following generalisation of the APL-functor.

Ω∗
n =

(
Ẑp〈x0, . . . xn〉⊗Λ (d x0, . . . ,d xn)(
x0 +·· ·+xn −p,d x0 +·· ·d xn

)) , |xi | = 0, |d xi | = 1.

One can then extend this construction by left Kan extension to produce a strictly commutative
dg-algebra associated to any simplicial set X . For reasons that will become apparent, we shall
call this construction the p-adic forms on X and denote it by Ω∗ (X ).

The reader should note that there is a key change here; instead of quotienting by x0 +
·· ·+xn = 1, we quotient by x0 +·· ·+xn = p. This will play a significant role in the subsequent
development of the theory.

0.4.5.2 The cohomology of the p-adic forms on X

It turns out that the p-adic forms on X compute the cohomology on X . Explicitly, we have
the following theorem.

Theorem L. Let X be a simplicial set. The cohomology ring of Ω∗ (X ) is isomorphic to the
singular cohomology of X . In other words, one has a ring isomorphism

H∗ (
Ω∗ (X )

)∼= H∗ (
X , Ẑp

)
.

0.4.5.3 Relationship with the singular chains complex

The non-vanishing of the zeroth Steenrod operation P 0 ensures that it is impossible to produce
a strictly commutative algebra weakly equivalent to the singular cochains complex. Therefore,
one can only hope to produce various kinds of approximation. This is whatΩ∗ (X ) does. More
precisely, the approximation that Ω∗ (X ) computes is the following.

Definition 0.4.8. Let X be a simplicial set. We define the p-shifted singular cochain algebra
D∗ (

X , Ẑp
)

to be the following subalgebra of the singular cochains C∗ (
X , Ẑp

)
.

Dn (X ) =
〈

p iσ : for σ ∈C n (
X , Ẑp

)
and

{
i = n if dσ= 0.

i = n +1 otherwise.

〉

The differential and the E structure are that induced by those on C∗ (
X , Ẑp

)
.

Our theorem explicitly says the following.

Theorem M. For every simplicial set X , the E -algebras Ω∗ (X ) and D∗ (
X , Ẑp

)
are weakly

equivalent.
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0.4.5.4 Applications to Massey products and formality

The p-adic de Rham forms allow us to quickly generalise a lot of theory from rational setting.
In particular, they contain information about the Massey products.

Theorem N. Suppose that σ ∈ H∗ (X ,Q) be the higher Massey product of 〈x1, x2, . . . , xn〉 ∈
H∗ (APL (X ) ,Q). Then there exists an n > 0 such that pnσ ∈ H∗ (

X , Ẑp
)

is the higher Massey
product of 〈pn x1, pn x2, . . . , pn xn〉 ∈ H∗ (

APL (X ) , Ẑp
)

computed in Ω∗ (X ) .

Moreover, when X is formal rationally, the p-adic de Rham forms are almost always formal.
Explicitly, we have the following result.

Theorem O. Let X be a finite simplicial set such that APL (X ) is formal over Q. For all but
finitely many primes, Ω∗ (X ) is formal over Ẑp as a dg-commutative dg-algebra.

0.4.6 A higher Hochschild-Konstant-Rosenberg theorem and the Deligne
conjecture

In this chapter, we study the higher Hochschild homology in rational homotopy theory, which
was first defined by Pirashvili. We prove a HKR-theorem in this context, generalizing the usual
one for the circle and Hochschild homology. which makes explicit the reliance of HKR-type
statements on formality. We go on to use this statement to construct an n +1-Poisson algebra
structure on the cotangent complex, generalising the cup product on Hochschild homology.

0.4.6.1 The classical Hochschild-Konstant-Rosenberg theorem

The classical HKR theorem states the following.

Theorem 0.4.9. Let k be a field of characteristic 0 and let A be a commutative k-algebra which is
essentially of finite type and smooth over k. Then there is an isomorphism of graded k-algebras

Φ : H H∗ (A, A)
∼−→Ω∗ (A,k)

between the Hochschild homology and the module of Kähler differentials.

This theorem can be generalised in several directions. First, there are chain level state-
ments. The smoothness assumption, which is used primarily as a cofibrancy condition in the
proof, can be dropped in favour of working with the cotangent complex, which is essentially a
derived version.

0.4.6.2 Generalising the Hochschild chain complex

As the name suggests, the Hochschild homology is the homology of a certain chain complex
called the Hochschild chain complex. Pirashvili has shown that one such way to construct
said complex is via a derived tensor product between a simplicial set and E∞-algebra. This
fundamentally arises from the fact that the category of E∞-algebras is enriched over simplicial
sets. Our first proposition is that this observation can be pushed further.
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Theorem P. Let X ∈ sSet and A ∈ E −alg. Then there exists an is a weak equivalence of
E -algebras between X ⊠ A and C∗ (X )⊗L

E
A. In other words, the diagram

sSet×E −alg E −alg

E −coalg×E −alg

⊠

C∗×i d ⊗L
E

commutes up to homotopy.

0.4.6.3 A higher Hochschild-Konstant-Rosenberg theorem theorem

In this context, our version of the Hochschild-Konstant-Rosenberg theorem is the following.

Theorem Q. Let X be a formal simplicial set of finite type in each degree. Let A be a CDGA.
Suppose that

(
Sym(V ) ,d

)
is a cofibrant, quasi-free resolution of A. Then there is a natural

equivalence of chain complexes

A⊠X
∼−→ Sym(V ⊗H∗ (X ) ,dX )

We call Sym(V ⊗H∗ (X ) ,dX ) the higher X -shaped tangent complex of A ∼= (
Sym(V ) ,d

)
. The

differential dX is defined with explicit dependence on the comultiplicative structure of H∗ (X ) .
Moreover this equivalence is functorial with respect to formal maps.

When X = S1, one recovers the classical HKR-theorem.

0.4.6.4 A n-Poisson coalgebra structure on the cohomology of n-fold suspensions

We first define a notion of coalgebra that takes into account the diagonal map on spaces.
Then, using this notion of coalgebra, we prove the following result.

Theorem R. For Σn X an n-fold suspension, the dg-algebra C∗(Σn X ) is equipped with a Poisn-
coalgebra structure. This structure extends to the cotangent complex and has trivial cobracket
on Hochschild homology.

0.4.6.5 A n +1-cotangent complex structure on Hochschild homology

Our final theorem of the chapter states the following.

Theorem S. Let X =ΣnY be an n-fold suspension. Then the cotangent complex(
Sym(H∗ (X )⊗V ) ,dX

)
is a coalgebra over Poisn+1

This can be viewed as a higher version of the Deligne conjecture, as the En-operad is
formal in characteristic 0, and so an n-Poisson structure is equivalent to a full En-structure.
Secondly, the HKR-theorem states that the cotangent complex is equivalent to the Hochschild
chain complex.

0.4.6.6 Appendix: A coendomorphism operad

In the appendix, we construct the potentially useful gadget of an explicit model for the coen-
domorphism operad of a coassociative algebra in the ∞-category of coassociative algebras.
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CHAPTER 1

A recognition principle for iterated suspensions as coalgebras over
the little cubes operad

Abstract

Our main result is a recognition principle for iterated suspensions as coalgebras over
the little cubes operads. Given a topological operad, we construct a comonad in pointed
topological spaces endowed with the wedge product. We then prove an approximation
theorem that shows that the comonad associated to the little n-cubes operad is weakly
equivalent to the comonad ΣnΩn arising from the suspension-loop space adjunction.
Finally, our recognition theorem states that every little n-cubes coalgebra is homotopy
equivalent to an n-fold suspension. These results are the Eckmann–Hilton dual of May’s
foundational results on iterated loop spaces.

1.1 Introduction

Since the invention of operads, they have played an essential role in many parts of mathe-
matics and physics. The first application and the original motivation for their invention
was for the study of iterated loop spaces (see [66] and [12]). Operads provide a coherent
framework for studying objects equipped with many "multiplications", i.e. operations
with multiple inputs and one output, satisfying certain homotopical coherences. An
important class of such objects are the n-fold loop spaces, which are algebras over the
little n-cubes operad. May showed in his recognition principle a homotopical converse,
namely that every little n-cubes algebra is weakly equivalent to an n-fold loop space; and
further proved an approximation theorem which asserts that the monad associated to
the little n-cubes operad is weakly equivalent to the monad ΩnΣn . This approximation
theorem reduced the study of operations on the homology of iterated loop spaces to the
combinatorics of the little cubes operads. This perspective unraveled their complete
algebraic structure (see [21]).

It has long been suspected that the recognition principle and the approximation the-
orem should have their corresponding Eckmann–Hilton dual versions. Indeed, work
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on this topic predates May’s recognition theorem itself. By the end of the 1950s, Bar-
ratt and Stasheff a preliminary version of these questions, trying to characterize n-fold
suspensions and co-H-spaces in terms of their algebraic structure. May’s proof of the
recognition principle reignited interest and there were immediate attempts to prove the
Eckmann–Hilton dual; some of this story can be found in the comments on the Math-
Overflow question [47]. We are also aware of other more recent attempts to tackle the
problem, but a solution has remained evasive until now. .

The goal of this chapter is to prove the Eckmann–Hilton dual results of May’s work on
iterated loop spaces. Our proof is the consequence of two key new insights. Firstly, in
general, without the added assumption of conilpotency, cofree coalgebra functors are
notoriously difficult to construct and almost impossible to concretely work with. We
were able to surmount this difficulty by proving that, in our case, elements of a cofree
coalgebra are determined by their arity 1 component (see Lemma 1.2.5). This is a very
special feature of our setting which is surprising compared to the more algebraic setting.
It is this fact that enabled us to cleanly define the cofree cooperation and perform the
concrete manipulations that made the proof possible. Secondly, we were able to show that
the corelations in our comonad lie in arity 2, something we were able to interpret in a very
concrete way (see Proposition 1.2.18.) The reader should note that the Eckmann–Hilton
dual of these facts both fail.

First of all, we construct a comonad in the category of pointed spaces associated to
an operad. Next, we show that n-fold suspensions are coalgebras over the little n-cubes
operad Cn . More precisely we prove the following result.

Theorem A. The n-fold reduced suspension of a pointed space X is a Cn-coalgebra. More
precisely, there is a natural and explicit operad map

∇ : Cn →CoEndΣn X ,

where CoEndΣn X is the coendomorphism operad ofΣn X . The map ∇ encodes the homotopy
coassociativity and homotopy cocommutativity of the classical pinch map Σn X →Σn X ∨
Σn X . In particular, the pinch map is an operation associated to an element of Cn(2).
Furthermore, for any based map X → Y , the induced map Σn X → ΣnY extends to a
morphism of Cn-coalgebras.

In this new setting, the Eckmann–Hilton dual of May’s celebrated recognition of
iterated loop spaces reads as follows.

Theorem B. Let X be a Cn-coalgebra. Then there is a pointed space Γn(X ), naturally
associated to X , together with a weak equivalence of Cn-coalgebras

ΣnΓn(X ) X ,≃

which is a retract in the category of pointed spaces. Therefore, every Cn-coalgebra has the
homotopy type of an n-fold reduced suspension.

Together, our theorems A and B provide the following intrinsic characterization of
n-fold reduced suspensions as Cn-coalgebras.

Corollary. Every n-fold suspension is a Cn-coalgebra, and if a pointed space is a Cn-
coalgebra then it is homotopy equivalent to an n-fold suspension.
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It is worth noting that this result already exists at the level of ΣnΩn coalgebras , see
Theorem 1.4.9. Let us turn our attention to the other celebrated result in [66], the approx-
imation theorem. It constitutes an essential step for proving the recognition principle
for n-fold loop spaces, and it is also the key to unlocking certain computations on the
homology of iterated loop spaces. Roughly speaking, the approximation theorem for
loop spaces asserts that the free Cn-algebra on a pointed space X is weakly equivalent to
ΩnΣn X . We also prove the Eckmann–Hilton dual of this result. It reads as follows.

Theorem C. For every n ≥ 1, there is a natural morphism of comonads

αn :ΣnΩn −→Cn .

Furthermore, for every pointed space X , there is an explicit natural homotopy retract of
pointed spaces

ΣnΩn X Cn(X )

In particular, αn(X ) is a weak equivalence.

The comonad Cn in the statement above is constructed in a natural way from the
little n-cubes operad. It is a non-trivial Eckmann–Hilton dualization of May’s monad
associated to Cn . To our knowledge, this comonad has not been studied elsewhere, and
it seems to be an exciting new object that might shed light on further understanding
n-fold reduced suspensions, as well as on other objects that support a coaction of the
little n-cubes operad.

Let us complete a bit more of the historical context. It has been known for a long time
that any (n −1)-connected CW complex of dimension less than or equal to (2n −1) has
the homotopy type of a (1-fold) suspension. In [8], [78], [37] and finally [51], this result
was successively improved on. In modern language, these authors showed that an (n −1)-
connected co-H-space equipped with an Ak comultiplication which is of dimension less
than or equal to k(n−1)+3 is a suspension. The case of k =∞ in [51] can be thought of as
the E1-version of Theorem B, although our proof strategy is very different. From a different
angle, the case of iterated suspensions considered as coalgebras over (a homotopical
version of) the ΣnΩn-comonad was recently treated in [11], where the authors obtained
a recognition principle for (n +1)-connected, n-fold (simplicial) suspensions. This last
result differs from our Theorem B in several key respects. Firstly; our notions of coalgebra
differ as they pass to a derived functor in the homotopy category of pointed spaces, while
we consider only ΣnΩn-coalgebras in the classical sense of coalgebras over comonads.
Secondly; our result has the sharpest possible connectivity requirement. The most striking
difference with all previous scholarships is that we make heavy use of the little n-cubes
operad and the comonad Cn ; whereas these objects do not seem to have appeared in
previous literature on the homotopy theory of iterated suspensions (with the exception of
[40] in a very different context). In particular, there is no approximation theorem in [11].

To conclude, a few remarks are in order. The first remark is that to prove our theorems
B and C , we do not follow an Eckmann–Hilton dual approach to May’s proof in the case
of iterated loop spaces. We have found a framework and proof which depends on explicit
homotopies and hence avoids the use of quasi-fibrations and the construction of auxiliary
spaces. In this sense, our approach is technically simpler. The approximation of suspen-
sions is an independent result that we believe might have potential side applications.
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Finally, most of the results of this chapter could have been stated using little n-disks
instead of little n-cubes. However, using cubes significantly simplify many of the explicit
formulae that appear when proving our results, and therefore we choose to present things
this way.

1.1.1 Notation and conventions

All topological spaces are compactly generated and Hausdorff. We denote by I the unit
interval in R and by J its interior:

J = (0,1) ⊆ [0,1] = I .

The symmetric group on n letters is denoted Sn .

For X = (X ,∗) a pointed space, it will be convenient to identify the r -fold wedge X ∨r

as a subspace of the cartesian product X ×r . To do so, consider

X ∨r =
r⋃

i=1
{∗}×·· ·× X︸︷︷︸

i

×·· ·× {∗} ⊂ X ×r .

A point x in the i -th factor of the wedge X ∨r is therefore identified with the point
(∗, ...,∗, x,∗, ...,∗) having x at its i -th component and the base point at all others. We
further use the convention that both X ∨0 and X ×0 are equal to the base point. Given
pointed mapsϕ1, ...,ϕr : X → Y , we denote by

(
ϕ1, ...,ϕr

)
the induced map X → Y ×r to the

product. Here, we implicitly used the diagonal map d : X → X ×r given by d(x) = (x, ..., x).
To simplify the notation we will omit the diagonal from the notation when this is clear
from the context. If the image of this map lands in the wedge subspace Y ∨r , we denote
the corresponding restriction by

{
ϕ1, ...,ϕr

}
. Thus, the curly brackets notation empha-

sizes that the map lands in the wedge rather than the product. We reserve the notation
ϕ1 ∨·· ·∨ϕr for the induced map X ∨r → Y ∨r given by(

ϕ1 ∨·· ·∨ϕr
)

(∗, ...,∗, xi ,∗, ...,∗) = (∗, ...,∗,ϕi (xi ) ,∗, ...,∗)
.

We frequently use the identification Σn X = Sn ∧X for the n-fold reduced suspension of a
pointed space X . Thus, points in Σn X will be denoted [t , x], where t ∈ Sn and x ∈ X . Since
points in the suspensions are equivalence classes, we use the square brackets notation.
From now on, we implicitly assume all suspensions are reduced.

We assume the reader is familiar with operad theory, especially in topological spaces,
and we refer to [36]. We use the following conventions. An operad P in a symmetric
monoidal category M = (M ,⊗,1) is unitary if P (0) = 1, and non-unitary if P (0) is not
defined (i.e., the underlying symmetric sequence of P starts in arity 1). We borrow this
nomenclature from [36, Section 2.2]. We will make heavy use of the operad of little
n-cubes Cn , considered as a unitary operad where Cn(0) =∗ is a single point.

1.2 Coalgebras over topological operads

Given a unitary topological operad P , we construct an explicit comonad CP in pointed
spaces. In Section 1.2.1, we carefully construct this comonad and study some of its
basic properties. The comonad CP gives rise to the category of coalgebras over P ,
also called P -coalgebras. There is a second way of defining P -coalgebras by using the
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coendomorphism operad that does not require the explicit construction of the comonad
CP . This alternative construction has the advantage that it can be defined for all operads
even when they are not necessarily unitary. The disadvantage is that it is not clear how to
get an explicit comonad out of this definition. We explain this alternative construction
and show that in the case of unitary operads it gives an equivalent notion of P -coalgebras
in Section 1.2.2. We specialize to the case in which P is the operad Cn of little n-cubes in
Section 1.2.3, producing the central comonad of this chapter. Finally, we prove Theorem
A in Section 1.2.4 - that the n-fold reduced suspension of a pointed space is naturally a
Cn coalgebra. Therefore, the n-fold reduced suspensions are the paradigmatic examples
of Cn-coalgebras.

Remark 1.2.1. In our constructions of coalgebras, we are mixing pointed and unpointed
spaces. All our operads live in the category of unpointed spaces while the coalgebras over
the operads and associated comonads live in the category of pointed spaces.

1.2.1 Construction of topological comonads

In this section, we construct the mentioned comonad CP in pointed spaces out of a
unitary operad P in unpointed spaces.

Let us first establish some preliminary notation. Denote

Top= (
Top,×, {∗}

)
and Top∗ =

(
Top∗,∨, {∗}

)
the symmetric monoidal categories of spaces endowed with the cartesian product ×,
and pointed spaces endowed with the wedge product ∨, respectively. Let P be a unitary
operad in Top with composition map γ and denote the unitary operation by ∗ ∈ P (0).
Define the restriction operators, for all n ≥ 1 and 1 ≤ i ≤ n, by inserting the unique point
∗ ∈P (0) at the i -th component:

P (n) P (n −1)

θ γ (θ; id, ...,∗, ..., id) .

di

Let X ∈Top∗. The wedge collapse maps, defined for all n ≥ 1 and 1 ≤ i ≤ n, are given by
collapsing the i -th factor in the wedge as follows:

X ∨n X ∨(n−1)

(x1, ..., xn) (x1, ..., x̂i , ..., xn).

πi

Here, the r -fold wedge is seen inside the r -fold cartesian product, and the notation x̂i

means that we are sending the i -th component to the basepoint.

Notation 1.2.2. If P is a unitary operad and X is a pointed space, we denote

Tot(P , X ) := ∏
n≥0

MapSn

(
P (n), X ∨n)

.

Each space MapSn

(
P (n), X ∨n

)
consists of the equivariant maps from the arity n com-

ponent of P equipped with its usual Sn-action to the n-fold wedge of X with itself
endowed with the Sn-action that permutes the coordinates of its points by σ · (x1, ..., xn) =(
xσ−1(1), ..., xσ−1(n)

)
. We frequently disregard the 0-th component in the infinite product

above, since the mapping spaceMap(P (0), X ∨0) is just a point. It can therefore be ignored
in all computations that follow. Thus, the point

(
f0, f1, f2, ...

) ∈ Tot(P , X ) will be denoted(
f1, f2, ...

)
. The topology on the space Tot(P , X ) is the usual product topology.
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We are ready to define the underlying endofunctor of our comonad CP .

Definition 1.2.3. Let P be a unitary operad in Top. Define the endofunctor in pointed
spaces

CP :Top∗ Top∗

X CP (X ) ,

where

CP (X ) = {
α= (

f1, f2, ...
) ∈ Tot(P , X ) | πi fn = fn−1di for all n ≥ 2 and 1 ≤ i ≤ n

}
is the subspace of Tot(P , X ) formed by those sequences

(
f1, f2, ...

)
that commute with

the restriction operators and wedge collapse maps. That is, for all n ≥ 2 and 1 ≤ i ≤ n, the
following diagram commutes:

P (n) X ∨n

P (n −1) X ∨(n−1)

di

fn

πi

fn−1

The base point of CP (X ) is the sequence α= (
f1, f2, ...

)
where each fr has image the base

point of X ∨r . Since the base point of the wedge X ∨r is fixed by the Sr -action, the base
point is well-defined. If f : X → Y is a pointed map, then CP

(
f
)

: CP (X ) → CP (Y ) is
defined by

CP

(
f
)

(α) = (
f ◦ f1,

(
f ∨ f

)◦ f2, ...,
(

f ∨ ...∨ f
)◦ fn , ...

)
.

The nth term in the sequence above is given by(
f ∨ ...∨ f

)◦ fn : P (n)
fn−−→ X ∨n f ∨...∨ f−−−−−−→ Y ∨n .

Remarks 1.2.4.

1. The idea of defining CP above as a subspace of Tot(P , X ) arises from an Eckmann–
Hilton dualization of May’s definition of the monad associated to an operad [66].
Recall that the monad Mn in pointed spaces defined in loc. cit. by using the little
n-cubes operad is given by

Mn(X ) =
(∐

r≥0
Cn(r )×X ×r

)
/ ∼,

where ∼ is the equivalence relation that glues level r to level r +1 by combining the
restriction operators with the insertion of the base point, (di (c), y) ∼ (c, si (y)), and
imposing the compatibility with the group action, (c ·σ, y) ∼ (c,σ · y). 1

2. The compatibility condition of a sequence α ∈ Tot(P , X ) with the restriction opera-
tors and wedge collapse maps,

πi fn = fn−1di , for all n ≥ 1 and 1 ≤ i ≤ n (1.1)

is the precise condition needed to incorporate a counit to the coalgebras in pointed
spaces that result from the comonad CP . See Remark 1.2.17 for further details.

1Here, (c, y) ∈Cn(r )×X ×(r−1), si (y) is the point of X ×r where we insert the base point at the i -th component,
and σ ∈ Sr .
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3. The comonad CP can be constructed in more general symmetric monoidal cate-
gories. For the applications that we give in this chapter, we are only interested in
the category of topological spaces.

Our next goal is to endow the endofunctor CP with a comonad structure. Before
doing so, we make two elementary observations that will simplify some of our proofs
later on. We will use the following notation: if h1, ...,hr is a family of maps such that the
composition

h1 ◦ · · · ◦hi−1 ◦hi+1 ◦ · · · ◦hr

makes sense, then we denote the expression above by

h1 · · · ĥi · · ·hr .

That is, the hat (̂−) on top of the i -th map indicates that this component is removed from
the composition. The first observation is the following.

Lemma 1.2.5. A sequence
(

f1, f2, ...
) ∈ CP (X ) is determined by its first component f1 :

P (1) → X . That is, we can recursively write, for all r ≥ 2,

fr =
{

f1d̂1d2 · · ·dr , f1d1d̂2d3 · · ·dr , ..., f1d1d2 · · ·dr−1d̂r

}
,

where the di ’s are the maps that insert ∗ ∈P (0) into the i th entry. We are using the usual
tuple notation {x1, . . . xn} to indicate an element in X ×n , but this can also be used to indicate
elements of X ∨n via the usual identification of X ∨n with a subspace of X ×n .

In the above lemma,
Recall that the term on the right hand side above follows the notation from Section

1.1.1.

Proof. Let α= (
f1, f2, ...

) ∈CP (X ) . Before we give a general proof of the lemma we first
work out the the r = 2 case since this makes the general argument clearer. Let

f2 : P (2) → X ∨X

be the second component of α. Denote by qi : X ∨ X → X the projection onto the i -th
factor of the wedge, for i = 1,2. There are identifications qi =π3−i , where π1,π2 : X ∨X →
X are the corresponding wedge collapse maps. Then,

f2 =
{

q1 f2, q2 f2
}= {

π2 f2,π1 f2
}= {

f1d2, f1d1
}= {

f1d̂1d2, f1d1d̂2

}
.

In the third equality above, we used the Equation (1.1) for n = 2. The proof for general
fr follows a slight generalization of the case just proven, where we recursively use the
identities of Equation (1.1) for all n between 2 and r . Thus, let

fr : P (r ) → X ∨r

be the r th component of α. Denote by qi : X ∨r → X the projection onto the i -th factor of
the wedge, for i = 1, ...,r . There are identifications

qi =π1π2 · · · π̂i · · ·πr , for all i = 1, ...,r.
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Recall the hat π̂i indicates that we omit the i -th term. There is a slight but harmless
abuse of notation above, since the π j ’s that appear in the expression of qi have different
domains. Then,

fr =
{

q1 fr , q2 fr , ..., qr fr
}

= {
π̂1π2π3 · · ·πr fr , π1π̂2π3π4 · · ·πr fr , ...,π1π2 · · ·πr−1π̂r fr

}
= {

π̂1π2π3 · · ·
(
πr fr

)
, π1π̂2π3π4 · · ·

(
πr fr

)
, ...,π1π2 · · ·

(
πr−1 fr

)}
= {

π̂1π2π3 · · ·
(

fr−1dr
)

, π1π̂2π3π4 · · ·
(

fr−1dr
)

, ...,π1π2 · · ·
(

fr−1dr−1
)}

= ·· ·

=
{
π̂1π2

(
f2d3 · · ·dr

)
, π1π̂2

(
f2d3 · · ·dr

)
, π1 f2

(
d2d̂3d4 · · ·dr

)
, π1 f2

(
d2 · · ·dr−1d̂r

)}
=

{
f1d̂1d2 · · ·dr , f1d1d̂2d3 · · ·dr , ..., f1d1d2 · · ·dr−1d̂r

}
.

This completes the proof.

The result above tells us that any sequence α= (
f1, f2, ...

) ∈CP (X ) can be written as

α= (
f1, f2, f3, ...

)= (
f1,

{
f1d2, f1d1

}
,
{

f1d2d3, f1d1d3, f1d1d2
}

, ...
)

.

However, it does not assert that any map P (1) → X can be extended to a sequence in
CP (X ) whose first component is the given map. In fact, that is usually not the case. Below,
we give a characterization when P is a unitary operad in topological spaces.

Let us point out the second observation. We need the following notation. If X is a
pointed space, and f : P (1) → X is any map, define for all r ≥ 2 and 1 ≤ i ≤ r the collection
of maps

f i
r := f

(
d1 · · · d̂i · · ·dr

)
: P (r ) → X .

The map
fr := {

f 1
r , ..., f r

r

}
: P (r ) → X ∨r

is then defined by first applying the diagonal map P (r ) →P (r )×r and then the product
of the f i

r . The map above usually lands in the product but it restricts to the wedge if, and
only if, the map belongs to the underlying space of the comonad.

Proposition 1.2.6. Let X be a pointed space. Then the space CP (X ) is homeomorphic to
the subspace of Map (P (1), X ) given by all those maps f1 : P (1) → X such that for any fixed
r ≥ 2, the maps f i

r are all the base point except for at most a single index i . In particular,
the image of the map

fr := (
f 1

r , ..., f r
r

)
: P (r ) → X ×r

is contained in the subspace X ∨r ⊆ X ×r . Furthermore, each

fr : P (r ) → X ∨r

is Sr -equivariant. Under this identification, the value CP

(
φ

)
on a pointed map φ : X → Y

is the postcomposition with φ:

CP (X ) CP (Y )

f CP

(
φ

)(
g
)=φ◦ f .

CP (φ)
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Proof. The fact that for a fixed r ≥ 2, the map f i
r is the base point for all indexes i except

for at most one, implies that the map

fr =
(

f 1
r , ..., f r

r

)
: P (r ) → X ×r

has its image in the wedge. Thus, it is correct to write fr =
{

f 1
r , ..., f r

r

}
.

⇒ Let
(

f1, f2, ...
) ∈ CP (X ), then we want to show that f i

r is the base point for all i
except for at most one. It is a straightforward consequence of Lemma 1.2.5 that the
component f1 of the sequence gives rise to the family of maps

{
f i

r

}
of the statement, with

fr =
{

f 1
r , ..., f r

r

}
. So, the implication follows.

⇐ Let f1 : P (1) → X be a map giving rise to the family of maps
{

f i
r

}
and fr satisfying

the hypotheses of the statement. Then we want to show that this indeed belongs to
CP (X ). Form the sequence (

f1, f2, ...
) ∈ Tot(P , X ) .

It suffices to check that for every r ≥ 2 and 1 ≤ i ≤ r , the identity fr−1di =πi fr holds. To
do so, we will make use of the following fact and notation for maps induced onto a wedge
of pointed spaces: given pointed spaces W,Y , Z and maps ϕ1, ...,ϕn : Y → Z such that{
ϕ1, ...,ϕr

}
: Y → Z∨n is well-defined, then for any map g : W → Y , we have{

ϕ1, ...,ϕr
}◦ g = {

ϕ1 ◦ g , ...,ϕr ◦ g
}

: W → Z∨n .

Thus, fix some r ≥ 2 and 1 ≤ i ≤ r . On the one hand,

πi fr =πi

{
f1d̂1 · · ·dr , ... , f1d1 · · · d̂r

}
=

{
f1d̂1 · · ·dr , ... ,(((((((

f1d1 · · · d̂i · · ·dr , ... , f1d1 · · · d̂r

}
.

(1.2)

Above, the strike-through indicates that the i -th component is not part of the sequence.
On the other hand,

fr−1di =
{

f1d̂1 · · ·dr−1 , ... , f1d1 · · ·�dr−1

}
◦di =

{
f1d̂1 · · ·dr−1 ◦di , ... , f1d1 · · ·�dr−1 ◦di

}
.

(1.3)

It suffices to check that, for any j with 1 ≤ j ≤ r −1, the j -th component of the sequence
(1.2) is equal to the j -th component of the sequence (1.3). This is a straightforward check,
taking into account whether j ≤ i or j ≥ i , and using the simplicial identities satisfied by
the dk ’s - namely, that di d j = d j−1di for i < j .

Proposition 1.2.6 above is very useful, as we will see in Section 1.3. Remark that this
result identifies the space CP (X ) as the subspace of Map (P (1), X ) formed by those maps
satisfying an extra property. Bear in mind that, under this identification, the evaluation of
CP on a morphism φ : X → Y corresponds to the postcomposition with φ.

Before going on, we introduce some notation that will be useful later.

Notation 1.2.7. We will occasionally use the following notation for the composition of
the restriction operators:

Di = d1 · · · d̂i · · ·dr : P (r ) →P (1).

These choices will simplify the formulae in what follows, making our results more readable.
Remark also that, for any operation θ ∈ P (r ), the resulting operation Di (θ) ∈ P (1) is
exactly

Di (θ) = γ(θ;∗, ...,∗, idP︸︷︷︸
i

,∗, ...,∗),

45



where γ is the composition map of P , the element idP ∈P (1) is the operadic unit, and
∗ ∈ P (0) is the unitary operation. In other words, Di (θ) retains the unary operation
determined by the i -th input of θ. For example, if P =Cn is the little n-cubes operad and
θ = (c1, ...,cr ) ∈Cn(r ) is a configuration of r little n-cubes, then Di (θ) = ci is the i -th little
n-cube of the configuration, seen as an element of Cn(1).

Let us finally equip the endofunctor CP with natural transformations ε : CP → idTop∗
and ∆ : CP →CP ◦CP that makes it a comonad. From now on, to lighten notation, we
denote C =CP , assuming that the operad P is understood.

Definition 1.2.8. Let C =CP :Top∗ →Top∗ be the endofunctor of Definition 1.2.3. Define
the natural transformations

ε : C → idTop∗ and ∆ : C →C ◦C

level-wise as follows.
• The counit structure map is defined by

εX : C (X ) X

α= (
f1, f2, ...

)
εX (α) := f1(idP ).

Here, idP ∈P (1) is the operadic unit.
• We next define the coproduct structure map

∆X : C (X ) →C (C (X )).

To do so, let α = (
f1, f2, ...

) ∈ C (X ). Then ∆x (α) = (
f̄1, f̄2, ...

)
is an element of the space

C (Z ), with Z =C (X ). Thus, it is formed by a sequence of maps

f̄r : P (r ) →C (X )∨r

satisfying the compatibility conditions

πi f̄r = f̄r−1di , for r ≥ 2 and 1 ≤ i ≤ r.

Because of Lemma 1.2.5 we only need to define the arity one component f̄1 : P (1) →C (X ),
and extend it as a sequence by the formula

f̄r =
{

f̄1D1, ..., f̄1Dr
}

,

where Di = d1 · · · d̂i · · ·dr .

For the definition above to be complete and correct, we require two steps:

Step 1. Define f̄1 : P (1) →C (X ).

Step 2. Check that f̄1Di = ∗ is the base point for all indexes i , except for at most a single
one.

Where Step 2 follows from Proposition 1.2.6.
Step 1 Denote by γ the operadic composition map of P . Define f̄1 : P (1) →C (X ) by

f̄1(µ) = (
gµ1 , gµ2 , ...

)
for all µ ∈P (1),
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where the maps gµr : P (r ) → X ∨r in the sequence are as follows. The first one is:

gµ1 : P (1) → X , gµ1 (θ) := f1
(
γ

(
µ;θ

))
,

for θ ∈P (1). That is, gµ1 = f1
(
γ

(
µ;−))

. The rest of the maps gµr are recursively defined by
the formula

gµr : P (r ) → X ∨r

gµr (θ) = {
gµ1 D1(θ), ..., gµ1 Dr (θ)

}= {gµ1 (γ(θ; idP ,∗, ..,∗), ..., gµ1 (γ(θ;∗, ..,∗, idP ))

For θ ∈ P (r ). We will check below that the image of gµr is indeed contained in the
wedge X ∨r . The family of maps gµr can be explicitly described. Let us first describe
gµ2 : P (2) → X ∨X . Using, in the order given, the recursive definition of gµ2 , the definitions
of Di and of gµ1 , and the associativity of γ, we can write

gµ2 (θ) = {
gµ1 D1(θ), gµ1 D2(θ)

}= {
gµ1

(
γ (θ; idP ,∗)

)
, gµ1

(
γ (θ;∗, idP )

)}
= {

f1
(
γ

(
µ;γ (θ; idP ,∗)

))
, f1

(
γ

(
µ;γ (θ;∗, idP )

))}
= {

f1
(
γ

(
γ

(
µ;θ

)
; idP ,∗))

, f1
(
γ

(
γ

(
µ;θ

)
;∗, idP

))}
.

Thus,
gµ2 = {

f1D1
(
γ(µ;−)

)
, f1D2

(
γ(µ;−)

)}
.

Next we need to show that f2 has its image in the wedge C (X )∨C (X ). Since α= (
f1, f2, ...

)
is an element of C (X ), it follows that all f1Di =∗ are the base point, except for at most a
single index i . Therefore, indeed, gµ2 has its image in the wedge. Furthermore, so defined,
gµ2 is S2-equivariant. In general, exactly the same steps as for the r = 2 case show that the
explicit formula for gµr is

gµr (θ) = {
f1

(
γ

(
γ(µ;θ); idP ,∗, ...,∗))

, ..., f1
(
γ
(
γ(µ;θ);∗, ...,∗, idP︸︷︷︸

j

,∗, ...,∗))
, ..., f1

(
γ

(
γ(µ;θ);∗, ...,∗, idP

))}
.

Above, the j -th component in the wedge has the identity idP ∈P (1) at the j -th compo-
nent.

Step 2 Let us check that f̄1Di =∗ is the base point for all indexes i except for at most a
single one. Recall that for fixed i , the map

f̄1Di : P (r ) →C (X )

evaluated at some operation µ ∈P (r ) is the previously defined sequence

f̄1Di (µ) =
(
g Di (µ)

1 , g Di (µ)
2 , ...

)
.

First, observe that for any θ ∈P (1) and index i , with 1 ≤ i ≤ r, we have

γ
(
Di (µ);θ

)= Di
(
γ(µ; idP , ..,θ, ..., idP )

)
.

Therefore, the first component of the sequence f̄1;D1(µ) can be written as

g Di (µ)
1 = f1

(
Di

(
γ

(
µ;−)))

.

Since the sequence
(

f1, f2, ...
)

is an element of the space C (X ), it follows that f1Di is the
base point for all i except for at most one, and therefore, the same holds for the family{

g D1(µ)
1 , ..., g Di (µ)

1 , ...
}

, which implies that f̄1Di =∗ is the base point for almost all i .
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Remark 1.2.9. In Proposition 1.2.6, we gave an identification of C (X ) as a certain sub-
space of Map(P (1), X ). From this point of view, the comultiplication ∆=∆X : C (X ) →
CC (X ) is given as follows. Let f ∈C (X ) ⊆ Map(P (1), X ). Then, ∆

(
f
)

is given by:

∆
(

f
)

: P (1) C (X )

c ∆
(

f
)

(c) : P (1) X

d f
(
γ (c;d)

)
.

That is, given f ∈C (X ), and c,d ∈P (1), the map ∆
(

f
)

is explicitly given by

∆
(

f
)

(c)(d) = f
(
γ (c;d)

)
.

Proposition 1.2.10. With the notation before, the triple (C ,ε,∆) is a comonad in Top∗.

Proof. We prove the coassociativity and counit axioms object-wise. For a pointed space
X , these axioms are described by the following diagrams:

C (X ) C (C (X )) C (X ) C (C (X ))

C (C (X )) C (C (C (X ))) C (C (X )) C (X ),

∆X

∆X ∆C (X )

∆X

id
∆X εC (X )

C (∆X ) C (εX )

where the left diagram gives the coassociativity condition and the right diagram the counit
condition.

Let α= (
f1, f2, ...

) ∈C (X ) then we will check that it satisfies the diagrams.

▷ Coassociativity. We must check that

(C (∆X )◦∆X ) (α) = (
∆C (X ) ◦∆X

)
(α). (1.4)

We analyze ∆X (α) first, given that it appears on both sides of the equation above, and
then look at each of the sides of the equation above. By Lemma 1.2.5, it suffices to check
that the arity one term of the sequences arising from both sides of Equation (1.4) agree.
This will ultimately follow from the associativity of the operadic composition γ of the
operad P .

• Description of ∆X (α).

∆X : C (X ) C (C (X ))

α ∆X (α) = (
f̄1, f̄2, ...

)
By Lemma 1.2.5, the sequence

(
f̄1, f̄2, ...

)
is determined by its first component f̄1. It is

given as follows:

f̄1 : P (1) C (X ) gµ1 : P (1) X

µ f̄1(µ) = (
gµ1 , gµ2 , ...

)
θ gµ1 (θ) = f1

(
γ(µ;θ)

)
• The left hand side of Equation (1.4) reads:

(C (∆X )◦∆X ) (α) =C (∆X ) (∆X (α)) =C
(

f̄1, f̄2, ...
)= (

∆X ◦ f̄1, {∆X ,∆X }◦ f̄2, ...
)

.

Here, given maps ϕi : Xi → Y , we are denoting the induced map by {ϕ1, ...,ϕn} : X1 ∨ ...∨
Xn → Y . We have:
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∆X ◦ f̄1 : P (1) C (X ) C (C (X ))

µ f̄1(µ) = (
gµ1 , gµ2 , ...

) (
ḡµ1 , ḡµ2 , ...

)
The map ḡµ1 above is determined by:

ḡµ1 : P (1) C (X ) h1 : P (1) X

θ ḡµ1 (θ) := (h1,h2, ...) λ h1(λ) = gµ1
(
γ(θ;λ)

)
• The right hand side of Equation (1.4) reads:(

∆C (X ) ◦∆X
)

(α) =∆C (X ) (∆X (α)) =∆C (X )
(

f̄1, f̄2, ...
)= (

¯̄f1
¯̄f2, ...

)
.

Here,

¯̄f1 : P (1) C (C (X )) lµ1 : P (1) C (X )

µ ¯̄f1(µ) = (
lµ1 , lµ2 , ...

)
θ lµ1 (θ) = f̄1

(
γ(µ;θ)

)
As mentioned, to check the coassociativity condition it suffices to check that ¯̄f1 =

∆X ◦ f̄1. By Lemma 1.2.5 again, our problem reduces to checking that ℓµ1 = ḡµ1 . And once
more, using the same lemma, this reduces to checking that the sequence f̄1

(
γ

(
µ;θ

))
has

first term equal to h1(λ) described before. The first term is explicitly given by

f1
(
γ

(
γ

(
µ;θ

)
;λ

))
. (1.5)

On the right hand side, the first nested term of gµ1
(
γ (θ;λ)

)
is explicitly given by

f1
(
γ

(
µ;γ (θ;λ)

))
. (1.6)

By the associativity of the operadic composition γ, the term inside f1 in Equation (1.5) is
the same as the term inside f1 in Equation (1.6). Thus, these two maps are equal. This
proves the coassociativity of the comultiplication.

▷ Counit. We must check two identities:

1. (C (εX )◦∆X ) (α) =α.

Indeed,

(C (εX )◦∆X ) (α) =C (εX ) (∆X (α)) =C (εX )
(

f̄1, f̄2, ...
)= (

εX ◦ f̄1, {εX ,εX }◦ f̄2, ...
)

.

Let us check that εX ◦ f̄1 = f1 as maps P (1) → X . If µ ∈P (1), then:(
εX ◦ f̄1

)
(µ) = εX

(
f̄1(µ)

)= εX
(
gµ1 , gµ2 , ...

)= gµ1 (idP ) = f1
(
γ(µ; idP )

)= f1(µ).

2.
(
εC (X ) ◦∆X

)
(α) =α.

In this case,(
εC (X ) ◦∆X

)
(α) = εC (X ) (∆X (α)) = εC (X )

(
f̄1, f̄2, ...

)= f̄1(idP ).

We must check that f̄1(idP ) = f1 as maps P (1) → X . Indeed, if θ ∈P (1), then

f̄1(id)(θ) = g 1
1 (θ) = f1

(
γ(id;θ)

)= f1(θ).
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The proposition is therefore proven.

For the sake of completeness, we recall here the well-known fact that comonads
explicitly create the cofree coalgebras of the underlying category (see for instance [71,
Corollary 5.4.23]).

Theorem 1.2.11. Let X be a pointed space. Then, C (X ) is the cofree C -coalgebra on X .
That is, for any C -coalgebra A in pointed spaces, there is a natural bijection

HomTop∗ (A, X ) ∼= HomC−Coalg (A,C (X )) .

In Section 1.2.3 we will give a few explicit examples of how this comonad looks like in
the case of the associative operad and the little n-cubes operad.

1.2.2 Alternative definitions of coalgebra over an operad

Let P be a unitary operad inTop. The comonad C =CP constructed in Section 1.2.1 natu-
rally gives rise to a category of coalgebras in Top∗. The objects in this category are pointed
spaces X together with a coalgebra structure map c : X →C (X ). We call the objects of this
category P -coalgebras. There is an equivalent way of defining a P -coalgebra by using the
coendomorphism operad that does not require the explicit construction of the comonad
C . In this alternative definition, the objects are pointed spaces X together with an operad
map P → CoEndX , where CoEndX is the coendomorphism operad asssociated to the
pointed space X . In this section, we present the alternative definition of P -coalgebra in
terms of coendomorphisms, and show that for unitary operads this is equivalent to the
comonadic definition. The definition of P -coalgebras in terms of the coendomorphism
operad is much more intuitive and defines the coalgebra structure in terms of explicit
cooperations, i.e. maps X → X ∨r . On the other hand, the comonad definition has the
benefit that it will be much easier to compare it to the ΣnΩn-comonad, making it more
suitable for proving the approximation and recognition theorems later in this chapter.

We start by defining the category of P -coalgebras using the comonad CP .

Definition 1.2.12. Let P be a unitary operad in Top. The category CP −Coalg of coal-
gebras in Top∗ associated to the comonad CP is called the category of (comonadic)
P -coalgebras. The objects in this category are triples (X ,c,ϵ), where c : X →C (X ), called
the coalgebra structure map of X and ϵ : CP (X ) → X the counit, are maps of pointed
spaces satisfying counit and coassociativity axioms:

X C (X ) X C (X )

X C (X ) C (C (X ))

c

id
εX

c

c C (c)

∆X

The morphisms between these objects are pointed maps X → Y that make the obvious
square commute.

Before giving the alternative definition of P -coalgebras, we must give the definition
of the coendomorphism operad associated with a pointed space.

Definition 1.2.13. Let X be a pointed space. The coendomorphism operad CoEndX in
pointed topological spaces with the wedge sum, has arity r component

CoEndX (r ) :=Map∗
(
X , X ∨r )

,
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the based mapping space from X to the r -fold wedge sum of X with itself. For r = 0, set
CoEndX (0) =∗. The operadic composition maps are defined as

γ :Map∗
(
X , X ∨n)×Map∗

(
X , X ∨m1

)×·· ·×Map∗
(
X , X ∨mn

)→Map∗
(

X , X ∨∑
mi

)
,

γ
(

f , g1, ..., gn
)

:= (
g1 ∨ ...∨ gn

)◦ f .

The symmetric group action on CoEndX (r ) permutes the wedge factors in the output of a
map f : X → X ∨r . The unit η : I → CoEndX is determined by mapping the base point in
I (1) = {∗} to the identity map in CoEndX (1) =Map∗ (X , X ).

It is straightforward to check that CoEndX is an operad in pointed spaces and we
leave this to the reader. The coendomorphism operad gives an alternative definition of
P -coalgebras.

Definition 1.2.14. Let P be a not necessarily unitary operad in Top, which we remind
the reader is taken to be the category CGH of compactly generated Hausdorff spaces. A
P -coalgebra is a pointed topological space X together with an operad map P → CoEndX .
A morphism of P -coalgebras is a pointed map f : X → Y such that the following diagram
commutes for all n:

P (n)×X X ∨ ...∨X

P (n)×Y Y ∨ ...∨Y

id× f

∆n

f ∨...∨ f

∆′
n

Here, ∆n and ∆′
n are the coalgebra structure maps of X and Y , respectively, which are

written arity-wise by using the mapping space-product adjunctions

Map
(
P (n)×Z , Z∨r )∼=Map

(
P (n),Map

(
Z , Z∨r ))

,

where Z is any pointed topological space. Note that since we are mixing pointed and
unpointed spaces we are viewing Map∗(X , X ∨r ) as a subspace of the unpointed mapping
space so that we are able to use the ×−Map-adjunction.

Remark 1.2.15. Note that this definition of a P -coalgebra is more general than the one
using the comonad from the previous section. In particular, we do not require the operad
to be unitary so these coalgebras are defined for a larger class of operads.

By using the mapping space-product adjunction for Sr -spaces, we see that there are
several equivalent ways of unpacking the definition of a coendomorphism P -coalgebra.
The definition of a coalgebra as a sequence of coproduct maps

∆r : P (r )×X → X ∨r

is also equivalent to a sequence of maps

∆′
r : X →Map

(
P (r ), X ∨r )Sr ,

satisfying certain conditions. Here Map(P (r ), X ∨r )Sr is the subspace of Sr -invariant
maps.

Versions of the coendomorphism operad have been explicitly used before in for ex-
ample [6] in the category of chain complexes. The notion of coalgebra in the category of
pointed spaces with the wedge product has also appeared before in [51], however they do
do not use the coendomorphism operad or construct an explicit comonad.

The following result asserts that for unitary operads both definitions of P -coalgebras
are equivalent.
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Proposition 1.2.16. Let P be a unitary operad in Top. Then the definition of a P -
coalgebra via the comonad from Section 1.2.1 is equivalent to definition of a P -coalgebra
via the coendomorphism operad from Definition 1.2.14.

Proof. Indeed, we can identify operad maps ρ : P → CoEndX with coalgebra structure
maps c : X →C (X ) by the following rule: for any θ ∈P (r ) and x ∈ X ,

ρr (θ)(x) = f x
r (θ).

Here, ρr is the arity r component of ρ, and f x
r is the r th-term of the sequence c(x) =(

f x
1 , f x

2 , ...
)
. The formula above turns a coendomorphism coalgebra into a comonad coal-

gebra and vice versa. It is further straightforward to check that this definition commutes
with morphisms.

From now on, we always use the shorter notation P −Coalg for the category of P -
coalgebras.

Remark 1.2.17. The P -coalgebras defined in this section are canonically counital. That
is, they come equipped with the unique map ε : X →∗, and this map behaves as a counit
with respect to the rest of the structure. This explains the compatibility conditions of
Equation (1.1). Indeed, if X is a P -coalgebras, then the following diagram commutes:

P (n)×X X ∨r X ∨(r−1)

P (n −1)×X X ∨(r−1)

∆r

di×id

id∨···∨ε∨···∨id

id

∆r−1

In the diagram above,∆r is the arity r coalgebra structure map of X , and id∨·· ·∨ε∨·· ·∨id
is precisely πi . Note that the counit of a coalgebra is unique, i.e. since ∗ is the terminal
object there is only one possible map from X to X ∨0 =∗. This is in high contrast with the
(unpointed) algebra case in which there are many possibilities for a unit, i.e. there are
many maps from X ×0 =∗ to X since ∗ is not the initial object in unpointed spaces.

1.2.3 The comonad associated to the little n-cubes operad

In this section, we take a closer look at the comonad constructed in Section 1.2.1, in the
particular case of P =Cn being the little n-cubes operad. Although we assume familiarity
with this operad, there are a number of small variations in the literature. We give a brief
summary below in order to carefully fix our conventions and establish the notation. We
will consistently denote by Cn the comonad in pointed spaces associated to the little
n-cubes operad Cn . In Proposition 1.2.18, we give a geometric characterization of Cn (X )
as an explicit subspace of Map (Cn(1), X ).

Denote by I n the unit n-cube of Rn and by J n its interior. A little n-cube is a rectilinear
embedding h : I n → I n of the form h = h1×·· ·×hn , where each component hi is given by

hi (t ) = (yi −xi )t +xi , for 0 ≤ xi < yi ≤ 1. (1.7)

The image h (J n) of the interior of I n under a rectilinear embedding h will be denoted
h̊. So although the operad is called the little n-cubes operad it is technically the little
n-rectangle operad.
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For each n ≥ 1, the little n-cubes operad Cn is an operad in Top. It was introduced
independently by Boardman–Vogt and May [12, 66] for studying iterated loop spaces. A
comprehensive modern reference is [36]. We consider the unitary version of this operad,
i.e., Cn(0) =∗ is the one-point space. For each r ≥ 1, the arity r component Cn(r ) of Cn

is the subspace of the mapping space

Cn(r ) ⊆Map

(∐
r

I n , I n
)

given by those rectilinear embeddings for which the images of the interiors of different
cubes are pairwise disjoint. That is,

Cn(r ) = {
(c1, ...,cr ) | each ci is a little n-cube, and c̊i ∩ c̊ j =; for all i ̸= j

}
.

The symmetric group Sr acts on a configuration c = (c1, ...,cr ) of little cubes by permuting
its components, (c1, ...,cr ) ·σ= (

cσ(1), ...,cσ(r )
)
. The operadic unit 1 ∈Cn(1) is the identity

map I n → I n , and the partial composition products are explicitly given by

(c1, ...,cr )◦i (d1, ...,ds) = (c1, ...,ci−1,ci ◦d1, ...,ci ◦ds ,ci+1, ...,cr ) .

That is: we re-scale and insert the little n-cubes d1, ...,ds in place of the little n-cube ci ,
which is removed, and then relabel accordingly.

Recall from Proposition 1.2.6 that the underlying space of the comonad CP (X ) associ-
ated to a unitary topological operad P and a pointed space X is characterized as a certain
subspace of Map (P (1), X ). In the particular case of the comonad Cn associated to the
little n-cubes operad, there is a very geometrical characterization. We need the following
preliminary notation. First, recall that

Di = d1 · · · d̂i · · ·dr : Cn(r ) →Cn(1)

denotes the composition of the restriction operators omitting the i -th term, which evalu-
ated at a configuration θ = (c1, ...,cn) ∈Cn(r ), recovers the i -th little n-cube ci . Now, let
X be a pointed space. Given f : Cn(1) → X any map, define for all r ≥ 2 and 1 ≤ i ≤ r the
collection of maps

f i
r := f ◦Di : P (r ) → X and fr := (

f 1
r , ..., f r

r

)
: P (r ) → X ×r . (1.8)

The mentioned characterization is the following.

Proposition 1.2.18. Let X be a pointed space, and Cn the comonad associated to the little
n-cubes operad. Then a map f : Cn(1) → X belongs to Cn(X ) if, and only if, f satisfies the
following property:

(D) If c1,c2 ∈Cn(1) are little n-cubes such that c̊1 ∩ c̊2 =;, then f (c1) =∗ or f (c2) =∗.

That is, taking f = f1, each map fr in (1.8) has its image in the r -fold wedge X ∨r , it is
Sr -equivariant, and the compatibility conditions fr−1di =πi fr are satisfied for all r ≥ 2
and 1 ≤ i ≤ r.

Proof. Assume f = f1 : Cn(1) → X satisfies property (D). Fix an arbitrary r ≥ 2, and some
1 ≤ i ≤ r . Define fr : Cn(r ) → X ×r by

fr =
(

f1D1, ..., f1Dr
)

.
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Let us check that fr has its image in the wedge. Indeed, for any θ = (c1, ...,cr ) ∈Cn(r ), it
follows from the definition of the space Cn(r ) that c̊k ∩ c̊ j =; for all j ̸= k. Furthermore,
for each index j between 1 and r , we can write

c j =
(
d1 ◦ · · · d̂i · · · ◦dr

)
(θ) = Di (θ).

Therefore, condition (D) applied to each pair ( j ,k) with j ̸= k implies that at most a single
component f1(c j ) is not the basepoint. Said differently: fr has its image in the wedge.
The map fr is Sr -equivariant. Indeed, for any σ ∈ Sr , one has

fr ·σ= {
f1D1, ..., f1Dr

}·σ= {
f1D1 ·σ, ..., f1Dr ·σ

}= {
f1Dσ(1), ..., f1Dσ(r )

}=σ·{ f1D1, ..., f1Dr
}

.

Since σ permutes the coordinates of the wedge factors, the claim is proven.
For the converse, assume that

(
f1, f2, ...

) ∈ Cn(X ), and that c1,c2 ∈ Cn(1) are little n-
cubes such that c̊1 ∩ c̊2 =;. This is precisely the condition needed to ensure that (c1,c2)
is an element of Cn(2). Consider f2 (c1,c2) ∈ X ∨ X . From the comonadic compatibility
conditions, one has

f1 (c1) =π1 f2 (c1,c2)

f1 (c2) =π2 f2 (c1,c2)

and therefore one of f1 (c1) or f1 (c2) must be the base point. Therefore f1 satisfies property
(D).

In the next remark, we point out the obvious fact that non-trivial strictly coassociative
coalgebras do not exist in pointed spaces.

Remark 1.2.19. Recall that a pointed space X is a co-H-space if it comes equipped with a
map c : X → X ∨X that is a factorization up to homotopy of the identity map X → X :

X X ∨X

X

c

id
qi

That is, q1c ≃ id ≃ q2c, where qi : X ∨ X → X is the projection onto the i th factor of the
wedge. If we try to strictify this diagram, considering q1c = id = q2c, then for any x ∈ X
we would have the following situation. The coproduct c(x) is either a point in the first
wedge factor, (x1,∗), or it is a point in the second wedge factor, (∗, x2). Without loss of
generality, we may assume that it is of the form c(x) = (x1,∗), we would then have

q2c(x) = q2(x1,∗) =∗.

If X has more than one point, we will not have q2c(x) = x for x ̸= ∗. Thus, the unique
strictly coassociative counital coalgebra is the one point space. This is a significant
contrast with the algebra case, where for example, the James construction [49] gives a
strictly associative monoid in pointed spaces modelling ΣΩX . The classical Moore loop
space is another important example of a pointed space endowed with a strictly associative
product. We conclude that there is no possible "rectification" of a counital homotopy
coassociative-coalgebra into a counital strictly coassociative coalgebra. Aside from the
elementary proof given here, the non-existence of strictly coassociative coalgebras in
Top∗ will also follow from Proposition 1.2.21, a more general statement asserting that
reduced operads produce trivial comonads, leaving no place for non-trivial counital
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coassociative coalgebras. Remark that it is the counit that is causing all the problems
in the discussion above. Since there are non-trivial non-counital strictly coassociative
coalgebras, the argument above does not apply. It is therefore not known whether strictly
coassociative rectifications exist in the case of non-counital coalgebras, but this is beyond
the scope of this chapter.

The particular instance of Theorem 1.2.11 in this case gives the following important
observation.

Theorem 1.2.20. Let X be a pointed space. Then, Cn (X ) is the cofree Cn-coalgebra on X .
That is, for any Cn-coalgebra A, there is a natural bijection

HomTop∗ (A, X ) ∼= HomCn−Coalg (A,C (X )) .

1.2.3.1 Reduced topological operads and weak equivalences

In this section, we prove that for reduced unitary topological operads (i.e. P (1) = {∗})
, the comonad CP is always the trivial one-point comonad. Therefore, the associated
category of P -coalgebras is trivial (Proposition 1.2.21). This is a striking difference with
the construction of Cn in the case of the little n-cubes operad Cn , whose category of
coalgebras is rich and interesting. As a consequence, we readily see that the comonad
construction does not respect weak equivalences in the Berger–Moerdijk model structure
[7] on topological operads. That is, if P →Q is a morphism of unitary operads in Top∗
which is a weak equivalence in each arity, it does not necessarily follow that the induced
map CP (X ) →CQ(X ) is a weak equivalence for each pointed space X . For example, the
associative operad Ass is reduced, producing a trivial category of coalgebras, but there is a
a well-known weak equivalence of operads C1 ↠Ass. Said differently, a weak equivalence
of unitary operads does not imply an equivalence of categories of coalgebras (even of up
to homotopy algebras)

Proposition 1.2.21. If P is a reduced unitary topological operad, then CP is the trivial
comonad. That is, CP (X ) is the one-point space for all pointed spaces X . In particular,
the comonads CAss and CCom produced respectively from the associative and commutative
operads are trivial.

Proof. Let P be an operad as in the statement. Fix a pointed space X , and consider an
arbitrary sequence α= (

f1, f2, ...
) ∈CP (X ). Then,

f1 : P (1) → X

specifies some point f1(∗) = x0 ∈ X . Recall (Lemma 1.2.5) that the higher terms fr in the
sequence α are determined by the recursive formula

fr =
{

f1D1, ..., f1Dr
}

. (1.9)

In particular, for any θ ∈P (2),

f2(θ) = {
f1d2(θ), f1d1(θ)

}= {x0, x0}.

Therefore, for f2 to be well-defined (i.e., having its image in the wedge), the point x0 must
be the base point of X . It then follows from the recursive formula (1.9) that for all r ≥ 2
and θ ∈P (r ), we have

fr (θ) = {
f1D1(θ), ..., f1Dr (θ)

}= {x0, ..., x0} .

That is, α is the trivial sequence.
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1.2.4 Iterated suspensions are coalgebras over the little cubes
operad

In this section, we show that the n-fold reduced suspension Σn X of a pointed space X is
a coalgebra over the little n-cubes operad. These are the paradigmatic examples of Cn-
coalgebras. To show our results, we use the coendomorphism version of Cn-coalgebras.
At the end of the section, we explain how the results in this chapter allows us to swiftly
recover the classical Cn-algebra structure on n-fold loop spaces as a convolution structure.
The Cn-coaction on Sn that we describe in this section has previously appeared, in the
context of the factorization homology, in [40].

Theorem 1.2.22. The n-fold reduced suspension of a pointed space X is a Cn-coalgebra.
More precisely, there is a natural and explicit operad map

∇ : Cn →CoEndΣn X

that encodes the homotopy coassociativity and homotopy cocommutativity of the classical
pinch map Σn X →Σn X ∨Σn X . In particular, the pinch map is an operation associated to
an element of Cn(2). Furthermore, for any based map X → Y , the induced map Σn X →
ΣnY extends to a morphism of Cn-coalgebras.

The first step in proving the result above consists in showing that the sphere Sn ,
with n ≥ 1, is a coalgebra over the little n-cubes operad. That is, we first show that the
statement above is true for X = Sn =ΣnS0.

Proposition 1.2.23. For every n ≥ 1, there is a natural and explicit morphism of operads

∇ : Cn →CoEndSn

turning the n-sphere into a Cn-coalgebra, so that all properties of Theorem 1.2.22 for
Σn X = Sn hold true.

Proof. Let us define the arity r component of ∇. This is a map

∇r : Cn(r ) → CoEndSn (r ) =Map∗
(
Sn ,Sn ∨ ...∨Sn)

.

For c = (c1, ...,cr ) ∈Cn(r ) a configuration of little n-cubes, we define the pointed map

∇r (c) : Sn (Sn)∨r

t ∇r (c)(t )

as follows. Identify Sn = I n/∂I n . Then t ∈ Sn is either the base point t = {∂I n} or else it is
an interior point of the n-cube I n . If t is interior, then is at most a single cube ci such that
t ∈ c̊i . We define

∇r (c)(t ) =
{[

c−1
i (t )

]
if t ∈ c̊i ,

∗ otherwise

Here,
[
c−1

i (t )
]

denotes the point in the i -th wedge factor of Sn ∨ ... ∨ Sn followed by
its inclusion as the i -th factor of the wedge. So defined, the maps ∇r (c) are pointed,
continuous and turn this into a morphism of operads. The fact that this is a morphism of
operads is straightforward to check and left to the reader.
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We prove next that the little n-cubes coalgebra structure on the sphere Sn just de-
scribed induces the little n-cubes coalgebra structure on an arbitrary n-fold reduced
suspension.

Proof of Theorem 1.2.22: Let Σn X be the n-fold reduced suspension of the pointed space
X . Write Σn X = Sn ∧ X , and recall that for any three pointed spaces X , Y and Z , the
wedge and smash product distribute over each other [44, S. 4.F ], i.e.

X ∧ (Y ∨Z ) ∼= (X ∧Y )∨ (X ∧Z ) .

In particular, when we take X to be Sn

Σn (Y ∨Z ) ∼=ΣnY ∨Σn Z .

Then, for c ∈Cn(r ), define the map Σn X → (Σn X )∨r as the composition

Σn X ∼= Sn ∧X
∇r (c)∧idX−−−−−−−→

((
Sn)∨r

)
∧X

∼=−→ (
Sn ∧X

)∨r ∼= (
Σn X

)∨r ,

where ∇r is the arity r component of the map ∇ defined in Proposition 1.2.23. All these
maps are continuous, commute with the symmetric group actions and the operadic
composition maps, producing a functorial construction. Alternatively, one can define the
operad map

CoEndSn → CoEndΣn X

given (up to isomorphism) by f 7→ f ∧ idX , and precompose it with the operad map of
Proposition 1.2.23. Doing this, one ends up with the map we described before. In this
sense, the Cn-coalgebra structure of an n-fold suspension always factors through the
Cn-coalgebra structure of Sn . □

Remark 1.2.24. The defined operad map ∇ : Cn → CoEndΣn X is determined by its arity 1
component∇1 : Cn(1)×Σn X →Σn X . Being more precise, as a consequence of Proposition
1.2.5, the following formula holds for all c ∈Cn(r ) and z ∈Σn X :

πi (∇r (c, z)) =∇r−1 (di (c) , z) ,

where πi and di are the wedge collapse and restriction operators from Section 1.2.1.

In the remainder of the section, we explain how the coalgebraic framework introduced
in this work let us swiftly recover the classical result by May that iterated loop spaces are
algebras over the little n-cubes operad. For this, we first need to define fold algebras in
the category of pointed spaces with the wedge product ∨.

Definition 1.2.25. Let X be a pointed space. The fold endomorphism operad End∨
X is the

operad whose arity r component is given by

End∨
X (r ) =Map∗

(
X ∨r , X

)
,

with the composition map given by inserting the output of a map into the input, and the
symmetric group action is given by permuting the inputs. If P is an operad in unpointed
spaces, then a fold P -algebra is a pointed space X together with a morphism of operads
P →End∨X .
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We leave it to the reader to check that the definition above gives an operad. Every
pointed space is canonically a commutative fold-algebra, where the products are given
by the canonical fold maps (which explains the name).

Using the definiton of a fold P -algebra, we can now define a convolution algebra
between a P -coalgebra and a fold Q-algebra, for operads P and Q. Denote by P ×Q the
arity-wise product of P and Q. This allows us to define convolution algebras in pointed
spaces as follows.

Proposition 1.2.26. Let P and Q be operads in unpointed spaces. Let X be a P -coalgebra
and Y a fold Q-algebra. Then the pointed mapping space Map∗ (X ,Y ) is a P ×Q-algebra.
The structure maps

γ : P (r )×Q(r )×Map∗(X ,Y )×r →Map∗(X ,Y )

applied to pointed maps f1, ..., fr : X → Y are explicitly given by

γ
(
(θ,ν); f1, ..., fr

)= (
ν◦ (

f1 ∨·· ·∨ fr
)◦∆)

(θ).

Here, (θ,ν) ∈P (r )×Q(r ) , i.e., the canonical map from the r -fold coproduct of X onto X ,
and ∆ : P → CoEndX is the P -coalgebra structure map of X .

Proof. This is similar to the construction in Section 1 of [7] and is left to the reader.

In particular, n-fold loop spaces fall into the framework described in the previous
result. Since every pointed space is canonically a commutative fold algebra, and the
arity-wise product of Cn with the commutative operad is isomorphic to Cn , we recover
May’s classical Cn-algebra structure on loop spaces as follows (see [66]).

Corollary 1.2.27. Let Ωn X be an n-fold loop space. Then, the Cn-algebra structure on

Ωn X =Map∗
(
Sn , X

)
induced by the Cn-coalgebra strucuture of Sn and the fold Com-algebra structure on X as
a convolution algebra is exactly the classical Cn-algebra structure on loop spaces.

Proof. By definition, each map Sn → Sn ∨·· ·∨Sn arising from the Cn coalgebra structure
of Sn induces the following convolution product on an n-fold loop space Ωn X . Given
α1, ...,αr : Sn → X and θ ∈Cn(r ), define γ(α1, ...,αr ) as

Sn ∇(θ)−−−→ (
Sn)∨r α1∨...∨αr−−−−−−→ X ∨r µr−→ X ,

where µr ∈Com(r ) is the r th fold map. Here, Com is the commutative operad. One checks
that these maps are exactly the maps described in [66, Section 5].

1.3 The Approximation Theorem

To prove the recognition principle for n-fold loop spaces, as well as to develop a unified
theory of homology operations for them, May proved the approximation theorem [66,
Theorem 6.1]. This consists of giving a morphism of monads from the monad Mn as-
sociated to the little n-cubes operad to the monad ΩnΣn , and proving that this natural
transformation is a weak equivalence on connected spaces. In this section, we prove an
Eckmann–Hilton dual result to approximate the comonad ΣnΩn .
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Theorem 1.3.1. For every n ≥ 1, there is a natural morphism of comonads

αn :ΣnΩn −→Cn .

Furthermore, for every pointed space X , there is an explicit natural strong deformation
retract of pointed spaces

ΣnΩn X Cn(X )

In particular, αn(X ) is a weak equivalence.

The proof of the result above does not consist of a dualization of the corresponding
proof of May’s theorem in the case of loop spaces. We take a different route which has the
advantage that it gives us explicit homotopies and does not require auxiliary spaces as is
needed in May’s original approach. It is at the moment not clear whether these methods
can also be used to give an alternative proof of the loop space approximation theorem.

Let n ≥ 1 be a fixed integer. The natural transformation α=αn :ΣnΩn →Cn is defined
object-wise as the composition

αX :ΣnΩn X
γ−→Cn

(
ΣnΩn X

) Cn(ηX )−−−−−→Cn (X ) ,

where γ is the Cn-coalgebra structure map of ΣnΩn X (Theorem 1.2.22), and ηX is the
evaluation at X of the counit η : ΣnΩn → idTop∗ of the (Σn ,Ωn)-adjunction. Unraveling
the definitions, we readily see that α=αX is explicitly given on a point [t ,ℓ] ∈ΣnΩn X =
Sn ∧Map∗ (Sn , X ) as the map α[t ,ℓ] : Cn(1) → X that acts on a little n-cube c ∈Cn(1) by

α[t ,ℓ](c) =
{
ℓ

(
c−1(t )

)
if t ∈ c̊

∗ otherwise

See Proposition 1.5.2 for more details on the definition of α.

Proof of Theorem 1.3.1: The proof consists of the following two steps.

(i ) We must check that α defines a morphism of comonads. This is not complicated,
but it is lengthy. Because of this, we postponed this proof to Appendix 1.5 (Proposition
1.5.2).

(i i ) We must check that for a fixed pointed space X , the space ΣnΩn X is a retract of
spaces of Cn (X ). To do so, we give a pointed map (of spaces, not comonads) Ψ =Ψn :
Cn (X ) →ΣnΩn X and a homotopy H : Cn(X )× I →Cn(X ) such that

Ψ◦α= idΣnΩn X and α◦Ψ≃ idCn (X ) . (1.10)

To define Ψ and the homotopy H = Hn : α◦Ψ≃ idCn (X ), we introduce below for each
f ∈ Cn (X ) a certain subset of the n-cube I n which we name the cubical support of f
and denote CSupp

(
f
)
. In the case of interest, the cubical support of a map f will be

non-empty and has a well-defined center, which is a point

Cent
(

f
) ∈ CSupp

(
f
)⊆ I n .

Theorem 1.3.1 will then follow from the two items just described. Since the first item
is proved in the mentioned appendix, it remains to prove the second one. We do this in
what follows.

Definition of Ψ

The pointed map Ψ is defined as follows.
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Ψ : Cn (X ) ΣnΩn X

f Ψ
(

f
)= [

Cent
(

f
)

,ℓ
]
.

Here, we need to explain what the two components above are:

t := Cent
(

f
) ∈ Sn and ℓ : Sn → X , s 7→ ℓ(s) := f

(
cs,Cent( f )

)
.

Since we are identifying Sn = I n/∂I n , we are denoting by Cent
(

f
)

a certain point of the
n-cube I n that we are denoting in the same way and is going to be explained below. On
the other hand, the little n-cube cs,Cent( f ) that depends both on f and s, follows a certain
construction to be explained below too.

Let us start with the following auxiliary definition. The cubical support of an arbitrary
map f : Cn(1) → X is the intersection of the images of all little n-cubes c : I n → I n such
that f acts non-trivially on c:

CSupp
(

f
)= ⋂

c∈Cn (1)
f (c )̸=∗

Im(c) ⊆ I n .

If the family over which we are taking the intersection above is empty, then we define
CSupp

(
f
)=;. If f is an element of Cn(X ), then this happens only when f is the trivial

map. In this case, we define Ψ
(

f
)

to be the base point of ΣnΩn X . The cubical support of
f is closely related to its classical support, namely, the set of points of the domain of f
where f acts non-trivially:

Supp
(

f
)= ⋃

c∈Cn (1)
f (c) ̸=∗

c ⊆Cn(1).

Indeed, since each c ∈Cn(1) defines the subset Im(c) ⊆ I n , the cubical support of f is the
subset of I n determined by the classical support of f . Recall also that an n-rectangle is a
subspace of Rn which is rectilinearly homeomorphic to I n or a singleton. An n-rectangle
that does not reduce to a single point is determined by the set of its 2n vertices, but also
more efficiently by 2n numbers that describe the length of the sides and their position. In
other words, an n-rectangle R is simply a cartesian product of closed intervals:

R = {
(x1, ..., xn) ∈Rn | ai ≤ xi ≤ bi for all i = 1, ...,n

}= [a1,b1]×·· ·× [an ,bn] ,

for certain ai ,bi ∈R satisfying ai ≤ bi .

Claim 1: The cubical support CSupp
(

f
)

of a map f ∈Cn (X ) is empty if, and only if, f is
the trivial map. Furthermore, if f is non-trivial, then its cubical support is a point or an
n-rectangle.

Proof of Claim 1: Let f ∈Cn(X ) be any map. If CSupp
(

f
) ̸= ;, then obviously f ̸= ∗. Let

us check the converse. Assume therefore that f ̸= ∗, and let us check that CSupp
(

f
) ̸= ;.

Indeed: since f ̸= ∗, there is some little n-cube d such that f (d) ̸= ∗. Thus, the family
{Im(c) | f (c) ̸= ∗} over which we are taking the intersection in the definition of the cubical
support is non-empty. Now, from Proposition 1.2.18, it follows that if c1,c2 ∈Cn(1) are
such that both f (c1) ̸= ∗ and f (c2) ̸= ∗, then necessarily c̊1 ∩ c̊2 ̸= ;. The intersection of
the interiors of any two n-rectangles that do not reduce to a point is either empty, or it
is again an n-rectangle that does not reduce to a point. From this fact, it follows that
CSupp

(
f
)

is non-empty.
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To check the furthermore assertion in Claim 1, let c ∈ Cn(1) be a little n-cube, and
write c = (

g1, ..., gn
)

in terms of its coordinate functions gi : I → I . Then, the image of the
cube c is the n-rectangle

Im(c) = [
g1(0), g1(1)

]×·· ·× [
gn(0), gn(1)

]⊆ I n .

There is an obvious canonical identification between little n-cubes and n-rectangles
contained in I n that do not reduce to a single point. The cubical support of a fixed map
f : Cn(1) → X is therefore the n-rectangle

CSupp
(

f
)= [a1,b1]×·· ·× [an ,bn] ,

where for each i = 1, ...,n

ai := sup
{

gi (0) | c = (
g1, ..., gn

) ∈Cn(1) and f (c) ̸= ∗}
,

bi := inf
{

gi (1) | c = (
g1, ..., gn

) ∈Cn(1) and f (c) ̸= ∗}
.

This finishes the proof of Claim 1. □

Every non-empty n-rectangle R has a center Cent(R). If R = [a1,b1]×·· ·×[an ,bn], then
its center is the point determined by the midpoint of each of the intervals,

Cent(R) =
(

a1 +b1

2
, ...,

an +bn

2

)
.

Observe that, if R = (x1, ..., xn) is a singleton, then Cent(R) = (x1, ..., xn). Assuming further-
more that R = CSupp

(
f
)

for some f , then we define Cent( f ), the center of f , as

Cent( f ) := Cent
(
CSupp

(
f
))= Cent(R).

Examples 1.3.2. Let us compute the cubical support CSupp
(

f
)

for several maps f .

1. Let Cn(∗) be the cofree Cn-coalgebra on a single point. Then, Cn (X ) =∗ reduces to
the trivial one-point space. Thus, the unique map f : Cn(1) →∗ collapses all little
n-cubes to the base point, and therefore, CSupp

(
f
)=;.

2. Consider the map f : C1(1) → I given by

f (c) =
{

0 if r ≤ 1/2

r −1/2 if r ≥ 1/2

Here, r = c(1)− c(0) is the size of the little 1-cube c . By Proposition 1.2.18, f defines
an element in C1 (I ), and one readily checks that Cent

(
f
) = CSupp

(
f
) = {1

2

}
. By

varying r , it is possible to construct a map having as center any chosen point in
(0,1).

3. Define f : C1(1) → I as in the example above replacing 1/2 by any real number
a ∈ [1

2 ,1
)

. By Proposition 1.2.18, f defines a map in C1 (I ). Its cubical support is the
interval [1−a, a]. In the case where α= 1

2 , we see again that Cent
(

f
)= 1

2 .

The examples above can be generalized to higher-dimensional cubes.

Another important example of cubical support is that of n-fold suspensions.
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Proposition 1.3.3. Let Σn X be the n-fold reduced suspension of a pointed space X , and
let γ :Σn X →Cn (Σn X ) be its Cn-coalgebra structure map. Then, for every non-base point
[t , x] ∈Σn X , we have that

CSupp
(
γ[t , x]

)= {t } .

Proof. First, we prove the result for spheres. If γ : Sn → Cn (Sn) is the Cn-coalgebra
structure map, we explicitly have

γ(t )(c) =
{

c−1(t ) if t ∈ c̊

∗ otherwise,

where t ∈ Sn and we identify Sn with I n/∂I n , the ambient cube of c modulo its boundary.
By definition, CSupp

(
γ(t )

)
is the intersection of the family{
Im(c) | c ∈Cn(1) and γ(t )(c) ̸= ∗}

.

The image Im(c) of a little n-cube is non-trivial if, and only if, t ∈ Im(c). Thus, the
cubical support CSupp

(
γ(t )

)
is the intersection of all non-trivial cubes containing t , and

therefore, it is the singleton {t }.
Now, for an arbitrary n-fold reduced suspension Σn X , factorize its coalgebra structure

map as follows:

Σn X = Sn ∧X Cn (Sn)∧X Cn (Sn ∧X ) .
γSn ∧idX F

The second map F above is given by

F
(

f , x
)= [

f (−), x
]

, for f : Cn(1) → Sn and x ∈ X .

The final composition is therefore explicitly given by

γ[t , x] : Cn(1) Sn ∧X

c
[
γ(t )(c), x

]
.

Here, the cubical support CSupp
(
γ[t , x]

)
is the intersection of the family{

Im(c) | c ∈Cn(1) and
[
γ(t )(c), x

] ̸= ∗}
.

Similar to the case of the spheres, we have

[
γ(x)(c), x

]={[
c−1(t ), x

]
if t ∈ c̊

∗ otherwise

We readily see from here that a little n-cube c has non-trivial image if, and only if, c̊
contains the component t of the sphere. Thus, the intersection of them all yields the
singleton {t }.

We also need the following auxiliary result. It explicitly describes the little n-cube that
appears in the loop ℓ : Sn → X of the second component of Ψ.

Claim 2: For each pair of points s, t ∈ I n −∂I n , there is a unique little n-cube c = cs,t : I n →
I n , depending continuously on (s, t ), such that:

1. c(s) = t ,
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2. Im(c) is the largest n-rectangle contained in I n requiring that for each coordinate,
at least one side of the embedded rectangle touches the corresponding side of the
ambient cube.

If s or t lies in the boundary ∂I n , we will not need to construct the cube cs,t . Indeed,
in this case Ψ will map the pair [t ,ℓ] to the base point of Cn(X ).

Proof of Claim 2: Let us explicitly construct c. Recall from Equation (1.7) that the rectilin-
ear embedding c is of the form

c (x1, ..., xn) = (
(b1 −a1) x1 +a1, ..., (bn −an) xn +an

)
,

where 0 ≤ ai < bi ≤ 1 for all i . Thus, each component ci of c is determined by the numbers
ai and bi . Imposing that c(s) = t , we get the relations

(bi −ai )si +ai = ti for each i .

A second constraint on each component i determines the numbers ai ,bi uniquely. Since
c touches each face of ∂I n , at each component ci we must have one of the following two
options:

1. ci (0) = 0, and then we deduce that

ci (xi ) = ti

si
· xi ,

or else

2. ci (1) = 1, and then we deduce that

ci (xi ) = xi + (1−xi )

(
si − ti

si −1

)
.

Now, there is no choice to be made here. Rather, the case is determined by the relation-
ship between s and t . That is, we are considering the separate cases where si > ti or
si < ti . More precisely, if for a fixed i , we have that 0 < ti /si < 1, then the first formula
gives a well-defined affine linear map onto the interval, but the second formula does
not (because its image lands outside the unit interval). If on the contrary the inequality
0 < ti /si < 1 does not hold, then the first formula does not work, while the second does.
To finish, observe that the formulae agree when si = ti , which makes the construction of
c a continuous function of s and t . Of course, in the case si = ti , we are taking the identity
map at the i -th coordinate. This finishes the proof of Claim 2. □

Having explained in full detail what all the items defining Ψ are, the map Ψ is given
by:

Ψ : Cn (X ) ΣnΩn X

f Ψ
(

f
)= [

Cent
(

f
)

,ℓ
]
,

where ℓ is defined as
ℓ : Sn → X ,

s 7→ ℓ(s) := f
(
cs,Cent( f )

)
.
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Our arguments so far show that the resulting function is a pointed continuous function
of f .

Definition of the homotopy H

The next step in the proof of the approximation theorem is to construct a homotopy
H : Cn (X )× I →Cn (X ) such that

H0 = idCn (X ), H1 =α◦Ψ, H (∗, t ) =∗ ∀t ∈ I . (1.11)

The following auxiliary construction is a key ingredient for the homotopy H . Intu-
itively speaking, the idea is to construct a homotopy from maps whose cubical support
is more than a point to maps whose cubical support is exactly a point. We construct
this homotopy by enlarging the cubes in Cn(1) until they hit the boundary while also
preserving the center. This is made precise in the following auxiliary construction.

Auxiliary construction: The rectilinear expansion of a little n-cube c ∈Cn(1) induced by a
map f ∈Cn (X ) whose center Cent

(
f
)

belongs to c̊.

Proof and explanations for the auxiliary construction: Let us explain the construction for
a little 1-interval c ∈C1(1); the general case is an application of this construction at each
coordinate of a little n-cube. Let c ∈C1(1), so that

c(t ) = (b −a)t +a

for some a,b with 0 ≤ a < b ≤ 1. Let

x1 = dist(Im(c),∂I ) = min{a,1−b}

be the distance from Im(c) to the boundary of the interval.

Definition 1.3.4. Let c ∈C1(1). The rectilinear expansion of c induced by a map f ∈C1(X )

whose center Cent
(

f
)

belongs to c̊ is the unique path γ= γ f
c : I →C1(1) satisfying:

• γ(0) = c,

• for every s ∈ (0,1],

– the cubeγ(s) is a rectilinear embedding that increases the size of c by min{s,dist(Im(c),∂I )}
while keeping the ratios between the sides equal, and

– the center Cent
(

f
)

is fixed by γ(s), i.e. if z = c−1
(
Cent

(
f
))

, then γ(s)(z) =
Cent

(
f
)
.

Let us explicitly describe the path above. For each s ∈ I , we have γ(s) ∈C1(1) of the
form

γ(s)(t ) = (b(s)−a(s)) t +a(s) ∀ t ∈ I .

For a fixed s ∈ I , two conditions on a(s) and b(s) determine γ(s) uniquely. We impose the
two mentioned conditions, namely that

γ(s)(p) = p,

where for simplicity we denote p = Cent
(

f
)
, and that the radius of γ(s) is that of c

increased by min{s, a,1−b}:

(b(s)−a(s))− (b −a) = min{s, a,1−b} .

64



These conditions produce the linear system of equations{
(1−p)a(s)+pb(s) = p

−a(s)+b(s) =α(s)

where α(s) = min{s, a,1−b}. The unique solution to the system above is

a(s) = p (1−α(s))

b(s) =α(s)−α(s)p +p.

Therefore, for a fixed s ∈ I , the little 1 interval γ(s) is given by

γ(s)(t ) =α(s)t +p −pα(s) ∀ t ∈ I .

This finishes the construction for a little 1-interval. In the general case, given c ∈Cn(1) of
the form

c (t1, ..., tn) = (
(b1 −a1) t1 +a1, ..., (bn −an) tn +an

)
and f ∈Cn (X ), define γ= γ f

c : I →Cn(1) to be the path such that

γ(s) (t1, ..., tn) = (
α1(s)t1 +p1 −p1α1(s), ...,αn(s)tn +pn −pnαn(s)

) ∀ (t1, ..., tn) ∈ I n .

This finishes the construction of the auxiliary path γ f
c : I →Cn(1), and therefore the proof

and explanations for the auxiliary construction. □

Now, we are ready to define the homotopy H : Cn (X )× I →Cn (X ). For each
(

f , t
) ∈

Cn (X )× I , this is the map
H

(
f , t

)
: Cn(1) → X

whose image on a little n-cube c ∈Cn(1) is

H
(

f , t
)

(c) = f
(
γ

f
c (t )

)
Here, γ f

c is the rectilinear expansion of c induced by f . Note that this rectilinear expansion
shrinks the cubical support of f to a point. We must check that H is well-defined,
continuous, and satisfies the requirements for being a pointed homotopy from idCn (X ) to
αΨ. To check that H is well-defined, we must corroborate that for each

(
f , t

)
, the map

H
(

f , t
)

indeed defines an element in Cn (X ). Recall from Proposition 1.2.18 that given
c1,c2 ∈Cn(1) with c̊1 ∩ c̊2 =;, this amounts to checking that

H
(

f , t
)

(c1) =∗ or H
(

f , t
)

(c2) =∗.

But this is immediate: if c̊1∩ c̊2 =;, then Cent
(

f
)

cannot be in both c1 and c2 at the same
time. Therefore, by definition H

(
f , t

)
vanishes on the little cube ci not having Cent

(
f
)

in its image. We conclude that H is well-defined. It is straightforward to check that H is
indeed continuous and we leave this to the reader. Similarly, it follows directly from the
definitions that the identities of Equation (1.11) hold.

We have therefore explained in full detail the definition of H , and checked it gives a
pointed homotopy between idCn (X ) and α◦Ψ.

Proving the equality Ψ◦α= idΣnΩn X

Let [t ,ℓ] ∈ΣnΩn X . By definition,

Ψα[t ,ℓ] = [Cent(α[t ,ℓ]) ,L] , (1.12)

65



where L : Sn → X is the loop

s 7→ L(s) =α[t ,ℓ]
(
cs,Cent(α[t ,ℓ])

)
.

Assume that X is not the one-point space and that ℓ is not the constant loop; otherwise
the result is trivial. We must check the two components in the right hand side of Equation
(1.12) are, respectively, t and ℓ.

1. Let us check that Cent(α[t ,ℓ]) = t . To do so, it suffices to check that CSupp(α[t ,ℓ])
reduces to the single point {t }. Indeed: if c ∈ Cn(1) is such that α[t ,ℓ](c) ̸= ∗, it
follows from the definition of α[t ,ℓ] that t ∈ c̊ (recall Equation (1.15)). Thus, t ∈
Im(c) for all little n-cubes c such thatα[t ,ℓ](c) ̸= ∗. Therefore, t is in the intersection
of all such images, namely CSupp(α[t ,ℓ]). Now, if t0 ̸= t , then we can always find a
little n-cube c̃ such that t0 ∉ Im(c̃) and t ∈ Im(c̃), and furthermore ℓ

(
(c̃)−1 (t )

) ̸= ∗
(possibly after reparametrization: it might be the case that the loop ℓ passes through
the basepoint of X , but we are assuming ℓ is not the constant loop).

2. Let us check that L(s) = ℓ(s) for all s ∈ Sn . Indeed: for t = Cent(α[t ,ℓ]), the little
n-cube c = cs,α[t ,ℓ] is such that c(s) = t . Said differently, c−1(t) = s. Therefore, by
definition:

L(s) =α[t ,ℓ] (c) =
{
∗ if t ∉ c̊

ℓ
(
c−1(t )

)
otherwise

= ℓ(s).

To summarise: we have explained the definition of the map Ψ and the homotopy H ,
and have shown the retract requirements of Equation (1.10) hold. Thus, the proof of
Theorem 1.3.1 is now complete.

Remark 1.3.5. In this section we have chosen to prove the approximation theorem for
the little n-cubes (rectangles) operad, but the ideas could easily be modified to other
little convex bodies operads, like the little n-disks operad. Here some small modification
would be needed to explain what exactly is meant by the center and how the expansion is
defined. For simplicity, we have decided to only look at the little cubes operads.

1.4 The Recognition Principle for n-fold reduced sus-
pensions

In this section, we prove the recognition principle for n-fold reduced suspensions. The
precise statement is the following.

Theorem 1.4.1. Let X be a Cn-coalgebra. Then there is a pointed space Γn(X ), naturally
associated to X , together with a weak equivalence of Cn-coalgebras

ΣnΓn(X ) X ,≃

which is a retract in the category of pointed spaces. Therefore, every Cn-coalgebra has the
homotopy type of an n-fold reduced suspension.

The result above is the converse of Theorem 1.2.22, where it was proven that n-fold
reduced suspensions are Cn-coalgebras. Summarizing, we are providing the following
intrinsic characterization of n-fold reduced suspensions as Cn-coalgebras.

66



Corollary 1.4.2. Every n-fold suspension is a Cn-coalgebra, and if a pointed space is a
Cn-coalgebra then it is homotopy equivalent to an n-fold suspension.

Remark 1.4.3. Compared to other statements in the literature, see for example [11,
51], Theorem 1.4.1 does not require any additional connectivity assumptions, and it is
therefore the sharpest possible result. This follows from the fact that every Cn-coalgebra
is (n −1)-connected. Indeed, let X be a Cn-coalgebra with structure map c : X →Cn(X ).
By the approximation theorem, the space Cn(X ) is homotopy equivalent to ΣnΩn X , and

thus (n −1)-connected. Since the composition X
c−→Cn(X )

εX−→ X is the identity on X by
the counit axiom, it follows that X is (n −1)-connected.

For readability, we shall give the proof of Theorem 1.4.1 straightaway, making reference
to the results and notation of the following two subsections.

Proof. By Theorem 1.3.1, there is a natural morphism of comonads αn : ΣnΩn −→ Cn ,
and ΣnΩn X is a retract of Cn (X ). Since ΣnΩn preserves equalizers (Proposition 1.4.10),
it follows from Lemma 1.4.8 that the counit map (αn)∗α!

n(X ) → X is a Cn-coalgebra
morphism which is a retract of pointed spaces pointwise. Since (αn)∗ preserves the
underlying topological space, it follows that the ΣnΩn-coalgebra α!

n(X ) is a retract of
X as a pointed space pointwise. It then follows from Theorem 1.4.9 together with the
approximation theorem that α!

n(X ) is naturally isomorphic to an n-fold suspension,
and so the counit map (αn)∗α!

n(X ) → X is an Cn-coalgebra map from a n-fold reduced
suspension to X . In particular, Γn is the functor Pn(αn)∗α!

n .

We give a second proof of Theorem 1.4.1 in Section 1.4.3 using explicit formulae very
similar to those appearing in the approximation theorem. This alternative proof is more
concrete, and has the further benefit of giving a characterization in terms of a certain
Cn-subcoalgebra.

1.4.1 The change of coalgebra structures induced by a comonad
morphism

In this section, we explain how a morphism of comonads α : C1 →C2 induces an adjoint
pair

α∗ : C1 −Coalg⇆C2 −Coalg :α!

between the corresponding categories of coalgebras (under reasonable hypotheses on
the underlying ambient category). The final goal is to prove the technical Lemma 1.4.8,
which is an essential ingredient for proving Theorem 1.4.1.

Suppose that C1 and C2 are two comonads over a category M which admits finite
limits, and that α : C1 →C2 is a morphism of comonads. The change of comonad functor

α∗ : C1 −Coalg−→C2 −Coalg

is given by mapping a C1-coalgebra X to the same underlying object of M equipped with
the C2-coalgebra structure map given by the composition

X
γX−−→C1(X )

αX−−→C2(X ).

On morphisms, α∗ is the identity.
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Since M has finite limits, by the dual of Dubuc’s adjoint triangle theorem [25], the
change of coalgebra functor α∗ has a right adjoint α! which we call the enveloping coalge-
bra functor. The C1-coalgebra α! (X ) is explicitly given as the equalizer in C1 −Coalg of
the following pair of morphisms:

C1(X ) C1C2(X )

C1C1(X )
△C1

C1(δX )

C1(αX )

Above, δX is the structure map of X as a C2-coalgebra. The following proposition, which
is the dual of [13, Prop. 4.3.2], gives conditions for this equalizer to be preserved by the
forgetful functor to M .

Proposition 1.4.4. Let C be a comonad on M and let U : C −Coalg→M be the forgetful
functor. Let G : D →C−Coalg be a diagram such that UG has a limit in M that is preserved
by C and C ◦C . Then G has a limit in C −Coalg that is preserved by U .

Proof. The proof of this result is dual to that of [13, Prop. 4.3.2], and it is left to the
reader.

We will need the following auxiliary definition.

Definition 1.4.5. A cosplit equalizer in a category is a diagram

A B C
p f

g

h s

where

sg = idB , hp = idA and s f = ph. (1.13)

The notion of a cosplit equalizer above is dual to that of split coequalizer, and it plays
in comonad theory the analog role of split coequalizers in the theory of monads (see [57,
VI. 6]). The following result is elementary but important.

Proposition 1.4.6. The cosplit equalizer of two morphisms is always an equalizer of the
two morphisms; and any functor preserves cosplit equalizers.

Proof. Assume we have a cosplit equalizer with the notation from Definition 1.4.5. To
prove the first assertion, assume that ϕ is any map such that f ϕ= gϕ. Then,

ϕ= hpϕ= s f ϕ= phϕ

factors through p. Since hp = idA , this factorization is unique. The second assertion is
a straightforward consequence of the fact that functors preserve the associativity of the
composition and the identity on objects.

Next, we relate cosplit equalizers with coalgebra structures.

Proposition 1.4.7. Let C be a comonad in an arbitrary category, and let X be a C -coalgebra.
Then, the coalgebra structure map γ : X →C (X ) fits into a cosplit equalizer diagram

X C (X ) CC (X ).
γ C(γ)

∆X
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Proof. Let X be a C -coalgebra with structure map γ. As a consequence of the coasso-
ciativity axiom for γ, we have the fork in the statement. By Proposition 1.4.6, we are
done as soon as we give cosplitting maps h, s satisfying the identities of Equation (1.13),
taking f = C

(
γ
)

and g = ∆X . These cosplittings h and s are respectively given by the
corresponding counits

εX : C (X ) → X and εC (X ) : CC (X ) →C (X ).

Let us check that the identities in Equation (1.13) hold. The identity hp = idA becomes
εX ◦γ= idX , which holds because it is precisely the counital axiom of the C -coalgebra X .
Similarly, the identity sg = idB becomes εC (X ) ◦∆X = idC (X ), which is exactly the counit
axiom at C (X ). It remains to check the identity s f = ph, that is, εC (X ) ◦C (γ) = γ◦εX . This
follows from the fact ε is a natural transformation and so one has the diagram

C (X ) CC (X )

X C (X ).

C (γ)

εX εC (X )

γ

We have checked the three identities of Equation (1.13). Therefore, the mentioned dia-
gram is a cosplit equalizer, and the proof is complete.

Finally, the following technical lemma allows us to directly compare C1 and C2-
coalgebras in pointed spaces under certain conditions. It constitutes an essential in-
gredient in the proof of Theorem 1.4.1.

Lemma 1.4.8. Let α : C1 →C2 be a morphism of comonads in Top∗ which is a retract of
pointed spaces at each level. If C1 preserves equalizers, then the counit α∗α! → idC2−Coalg
of the

(
α∗,α!

)
adjunction is a retract of pointed spaces at each level. In particular, for every

C2-coalgebra X , the underlying map of pointed spaces α∗α!(X ) → X is a retract.

Proof. Let X be a C2-coalgebra. Let us prove that the underlying map of pointed spaces
of the C2-coalgebra morphism α∗α!(X ) → X is a retract. Since α∗ is the identity on the
underlying pointed space, this underlying map is α!(X ) → X . Recall from Proposition
1.4.7 that the C2-coalgebra structure γ on X is given by presenting X as the (cosplit)
equalizer of the following diagram:

C2(X ) C2C2(X ).
C2(γ)

∆X

Here, ∆X is the comultiplication of the C2 comonad at X . This equalizer is taken in
C2 −Coalg, but we can compute the underlying topological space via the same limit in
the category of pointed topological spaces. This is because this limit is a cosplit equalizer,
and therefore an equalizer which is preserved by the forgetful functor (see Proposition
1.4.6). Since C1 is assumed to preserve equalizers, by Proposition 1.4.4, and using a similar
argument, the underlying topological space of α!(X ) may be computed as the equalizer
of the diagram

C1(X ) C1C2(X )
C1(γ)

C1(αX )◦∆C1
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in the category of pointed topological spaces. The retract provided by α thus extends to a
map (in the category of pointed topological spaces) between the diagram defining α!(X )
and one defining X , namely,

C1(X ) C1C2(X )

C2(X ) C2C2(X )

αX

C1(γ)

C1(αX )◦∆C1

αC2(X )

C2(γ)

∆X

The corresponding map of limits is thus precisely the desired map α!(X ) → X . Since
retracts are preserved under limits, we conclude that this map is a retract of pointed
spaces.

1.4.2 The ΣnΩn-coalgebras are n-fold reduced suspensions

In this section, we completely characterize the coalgebras over the ΣnΩn-comonad (The-
orem 1.4.9).

A warning on the notation: in other parts of this chapter, we have consistently denoted
by ∆ and ε the comonadic structure maps of the comonad Cn constructed from the
little n-cubes operad; while ∆′ and ε′ were used for the comonaic structure maps of the
comonad ΣnΩn . Since there will be only a single comonad appearing in this section,
namelyΣnΩn , we make an exception here and denote by∆ and ε the comonadic structure
maps of ΣnΩn to make the reading easier.

Theorem 1.4.9. Let X be a ΣnΩn-coalgebra. Then X is naturally isomorphic to the n-
fold reduced suspension of a space Pn(X ) which can be computed as the equalizer of the
following pair of maps:

Ωn X ΩnΣnΩn X .
Ωnγ

ηΩn X

Here, η is the unit of the (Σn ,Ωn) adjunction, and γ is the ΣnΩn-coalgebra structure map
of X .

Theorem 1.4.9 is essentially a consequence of the fact that reduced suspensions,
despite being left adjoint, preserve equalizers. Next, we give a proof of this elementary
fact for completeness.

Proposition 1.4.10. The n-fold reduced suspension functor Σn :Top∗ →Top∗ commutes
with equalizers. In other words, if Eq

(
f , g

)
,→ X is the equalizer of the diagram

X Y ,
f

g

then Σn Eq
(

f , g
)
,→Σn X is the equalizer of the diagram

Σn X ΣnY .
Σn f

Σn g

Since Ωn is right adjoint and thus preserves limits, it further follows that ΣnΩn preserves
equalizers.
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Proof. Recall that, as a set, the equalizer of f and g is given by

Eq
(

f , g
)= {

x ∈ X | f (x) = g (x)
}

.

Since we tacitly work in the category CGH of compactly generated Hausdorff spaces, the
topology on this set is not necessarily the subspace topology, but might be finer. Explicitly,
its topology is given by applying the k-ification functor k(−), see for example [67, Chapter
5]. This functor is the right adjoint of the inclusion of CGH into ordinary topological
spaces. This change in the underlying topology is not an issue, because taking n-fold
reduced suspension commutes with the k-ification functor. Indeed, if X and Y are any
compactly generated Hausdorff spaces and X is locally compact, then X×Y is a compactly
generated Hausdorff space ([83, Thm. 4.3]). Since the sphere Sn is locally compact, the
product Sn ×X is compactly generated Hausdorff for any compactly generated Hausdorff
space X . Since the smash product Sn ∧X is the pushout of the inclusion Sn ∨X ,→ Sn ×X
along the collapse map Sn ∨X →∗, it follows that Sn ∧X =Σn X is compactly generated
Hausdorff. Thus,

Σn Eq
(

f , g
)= Sn ∧Eq

(
f , g

)
.

Points in the suspension above are of the form [t , x], with t ∈ Sn and x ∈ X such that
f (x) = g (x). On the other hand,

Eq
(
Σn f ,Σn g

)= {
[t , x] ∈Σn X | [t , f (x)

]= [
t , g (x)

]}
.

Under the two identifications above, the natural map

Σn Eq
(

f , g
)→ Eq

(
Σn f ,Σn g

)
is a homeomorphism.

Recall from Proposition 1.4.7 that every coalgebra structure map is characterized as a
cosplit equalizer. In particular, we have the following result.

Proposition 1.4.11. Let X be a ΣnΩn-coalgebra with structure map γ. Then, as a pointed
space, X is the (cosplit) equalizer of the following pairs of maps

ΣnΩn X ΣnΩnΣnΩn X .
ΣnΩnγ

∆X

Here, △ is the comonadic comultiplication of ΣnΩn .

Proof. As mentioned, this is a particular case of Proposition 1.4.7. The following diagram
is a cosplit equalizer:

X ΣnΩn X ΣnΩnΣnΩn X ,
γ ΣnΩnγ

∆X

where the cosplittings h and s are respectively given by the corresponding counits

εX :ΣnΩn X → X and εΣnΩn X :ΣnΩnΣnΩn X →ΣnΩn X .

Let us finally prove the main result of this section.

Proof of Theorem 1.4.9. Use, in the order given, Proposition 1.4.11, that the comonadic
coproduct ∆X is explicitly given by ΣnηΩn (X ), and Proposition 1.4.10 to obtain that

X = Eq
(
ΣnΩnγ,∆X

)= Eq
(
ΣnΩnγ,ΣnηΩn X

)=Σn Eq
(
Ωnγ,ηΩn X

)
.

This is exactly what we wished to prove.
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1.4.3 A point-set description of the recognition principle

We give here an alternative proof of the recognition principle mentioned in the introduc-
tion to Section 1.4. This proof has the advantage of explicitly characterizing the n-fold
suspension onto which a Cn-coalgebra retracts.

Theorem 1.4.12. Let X be a Cn-coalgebra. Then, there is a pointed space Z together with a
homotopy equivalence of Cn-coalgebras X ≃Σn Z .

The strategy of the proof is the following. First we show that every Cn-coalgebra X
contains a Cn-subcoalgebra S(X ) which is also a ΣnΩn-coalgebra, and that there is a
retract of X onto S(X ) (Theorem 1.4.13 and Theorem 1.4.14, respectively). Because of
Theorem 1.4.9 this implies that S(X ) is an n-fold suspension, proving Theorem 1.4.12.

In Proposition 1.3.3, we saw that ΣnΩn-coalgebras considered as Cn-coalgebras have
the property that the cubical support at each point is just a single point. In this section,
we prove that the converse is also true. That is, every Cn-coalgebra of which the cubical
support of every point (other than the base point) is just a single point is not just a
Cn-coalgebra, but also a ΣnΩn-coalgebra.

It further turns out that the set of points whose cubical support is just a single point
forms a Cn-subcoalgebra.

Theorem 1.4.13. Let X be a Cn-coalgebra with coalgebra structure map c : X →Cn(X ).
Then, the subspace

S(X ) = {
x ∈ X | | CSupp(c(x))| = 1

}∪ {∗} ⊆ X

formed by the points of X whose cubical support is a single point, together with the base
point, is such that the following assertions hold.

1. The inclusion S(X ) ,→ X is a homotopy equivalence of pointed spaces.

2. The subspace S(X ) is a Cn-subcoalgebra, and the inclusion is a morphism of Cn-
coalgebras.

Therefore, the inclusion S(X ) ,→ X is a homotopy equivalence of Cn-coalgebras.

The result above tells us that any Cn-coalgebra X contains a homotopy equivalent
Cn-subcoalgebra S(X ) with an extra property. Thus, to prove Theorem 1.4.12, the task
has been reduced to showing that S(X ) is equivalent to an n-fold suspension as a Cn-
coalgebra. It turns out that S(X ) is not only equivalent to a suspension, but we can say
slightly more. This is the content of the next result.

Theorem 1.4.14. Let X be a Cn-coalgebra. Then, the Cn-subcoalgebra S(X ) of Theorem
1.4.13 is a ΣnΩn-coalgebra.

Since every ΣnΩn-coalgebra is an n-fold suspension (Proposition 1.4.10), Theorem
1.4.12 is proven. Thus, it suffices to show the two results mentioned, and we do that next.

Proof of Theorem 1.4.13. Denote by i : S(X ) ,→Cn(X ) the inclusion and by c : X →Cn(X )
the coalgebra structure map.

Item 1. Let us give a retraction (of spaces) r : X → S(X ), that is, a continuous map r
such that r i = idS(X ) and a homotopy H : X × I → X between i r and idX . The map r is
given as the composition

r : X ,→Cn(X )
ΨX−−→ΣnΩn X

αX−−→Cn(X )
εX−→ X .
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The maps above are, respectively, the coalgebra structure map of X , the natural trans-
formations Ψ and α, and the counit ε from Section 1.3. Since the map ΨX reduces the
cubical support of every point to a singleton, then the image of this map is exactly the
subspace S(X ). It further follows that r i is the identity on the subspace S(X ) because the
map ΨX does not change the cubical support of points whose cubical support was just a
single point already.

The homotopy H from Theorem 1.3.1 can also be used to induce a homotopy in this
case. In particular we get the following homotopy

H : X × I ,→Cn(X )× I
HX−−→ΣnΩn X

αX−−→Cn(X )
εX−→ X .

It is straightforward to check that by exactly the same arguments as in Theorem 1.3.1 this
is indeed a homotopy between i r and idX . Therefore the inclusion S(X ) is a homotopy
equivalence of pointed spaces.

Item 2. To show that S(X ) is a Cn-subcoalgebra, we must show it is closed under
the coproduct. That is, we must check that if x ∈ S(X ) then the image of the map c(x) :
Cn(1) → X is contained in the subspace S(X ) ⊆ X .

To show that this is indeed the case we make the following observation. If d ,d ′ ∈Cn(1)
are two cubes such that d ⊂ d ′, then c(x)(d) ̸= ∗ implies that c(x)(d ′) ̸= ∗. This is because
of the coassociativity of the comonad. Since d is the composition of d ′ with some other
little cube e d = e ◦d ′ for some little cube e we have that c(x)(d) is equal to

Cn(1)
e−→Cn(1)

c−→ X ,

evaluated at d ′. So c(x)(d) = c(x)(d ′◦e) = e(c(x))(d ′), where e(c(x)) is first the composition
of e in the comonad and then acting with this on the coalgebra. It therefore follows that if
d ⊂ d ′ then if c(x)(d) ̸= ∗ then c(x)(d ′) ̸= ∗. From this it is straightforward to deduce that if
the cubical support of c(x) is just a single point then the image of c(x) is contained in S(X ),
otherwise the previous identity would be violated. Therefore, S(X ) is a Cn-subcoalgebra
and the inclusion map is a homotopy equivalence of Cn-coalgebras.

Proof of Theorem 1.4.14. To prove Theorem 1.4.14, we need to define a map c ′ : S(X ) →
ΣnΩnS(X ) and show that it satisfies the comonad identities.

We define c ′ : S(X ) → ΣnΩnS(X ) by mapping c ′(x) := [t ,ℓ], where t = Centc(x) and
ℓ : Sn → S(X ) is given by

ℓ(s) = c(x)
(
cs,Centc(x)

)= c(x)
(
cs,t

)
,

where cs,Centc(x) is the cube from the proof of Theorem 1.3.1. Because c ′ is a Cn-coalgebra
map, it follows that it also satisfies the coassociativity axiom to be a ΣnΩn-coalgebra,
which completes the proof.

1.5 Appendix: The mapα is a morphism of comonads

In this appendix, we give the necessary definitions and prove in full detail that the natural
transformation

αn :ΣnΩn →Cn

appearing in Theorem 1.3.1 defines a morphism of comonads.
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Definition 1.5.1. A morphism of comonads α : (C ,∆,ε) → (
C ′,∆′,ε′

)
in a category M is a

natural transformation α : C → C ′ such that for every object X ∈ M , the following two
diagrams commute:

C (X ) C ′(X ) C (X ) C (C (X ))

X C ′(X ) C ′(C ′(X ))

ε′X ◦αX = εX α2
X ◦∆X =∆′

X ◦αX

αX

εX ε′X

∆X

αX α2
X

∆′
X

The morphism α2
X is defined by the following diagram, which is commutative because α

is a morphism of comonads.

C (C (X )) C ′C (X )

C (C ′(X )) C ′(C ′(X ))

αC (X )

C (αX )
α2

X
C ′(αX )

αC ′(X )

α2
X =C ′(αX )◦αC (X ) =αC ′(X ) ◦C (αX ) (1.14)

Next, we settle the morphism of comonads assertion made in Theorem 1.3.1.

Proposition 1.5.2. The natural transformation αn : ΣnΩn → Cn in Theorem 1.3.1 is a
morphism of comonads.

Proof. Fix an integer n ≥ 1, and denote αn by α to simplify the notation. Recall that
object-wise, the natural transformation α is explicitly given by

αX :ΣnΩn X
γ−→Cn

(
ΣnΩn X

) Cn (ηX )−−−−→Cn (X ) ,

where γ is the Cn-coalgebra structure map of ΣnΩn X (Theorem 1.2.22), and ηX is the
evaluation at X of the counit η :ΣnΩn → idTop∗ of the adjunction (Σn ,Ωn). Identify

ΣnΩn X ∼= Sn ∧Map∗
(
Sn , X

)
.

Under this identification, the counit ηX :ΣnΩn X → X becomes the evaluation map,

ev : Sn ∧Map∗
(
Sn , X

)→ X ev : [t ,ℓ] 7→ ℓ(t ).

Next, identify Cn (X ) as a subspace of Map (Cn(1), X ). Recall that under this iden-
tification, the value of Cn(g ) on a map g : Cn(1) → X is the postcomposition with g
(Proposition 1.2.6). Then, the map αX : ΣnΩn X → Cn (X ) is explicitly given on a point
[t ,ℓ] as the map

αX [t ,ℓ] : Cn(1) → X

whose image on a little n-cube c ∈Cn(1) is

α[t ,ℓ](c) =
{
ℓ

(
c−1(t )

)
if t ∈ c̊

∗ otherwise
(1.15)
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Geometrically,αX is just re-scaling the evaluation map ev : Sn∧Map∗ (Sn , X ) by shrinking
the points of Sn = I n/∂I n according to the little n-cube c.

We can now check the commutativity of the diagrams in Definition 1.5.1.

ε′X ◦αX = εX

Let [t ,ℓ] ∈ΣnΩn X . Since ε′X plugs the identity operation id ∈Cn(1), we have:

ε′X ◦αX :ΣnΩn X Cn (X ) X

[t ,ℓ] αX [t ,ℓ] αX [t ,ℓ](id) = ℓ(c(t ))

αX ε′X

The composition above is exactly the definition of εX [t ,ℓ].

α2
X ◦∆X =∆′

X ◦αX

The map α2
X can be written as two different compositions, see Diagram (1.14). Here,

we prove that

αC ′(X ) ◦C (αX )◦∆X =∆′
X ◦αX , (1.16)

where C =ΣnΩn αn−−→C ′ =Cn . The left hand side of Equation (1.16) is the composition

ΣnΩn X ΣnΩn (ΣnΩn X ) ΣnΩn (Cn (X )) Cn (Cn (X )) .
∆X ΣnΩn (αX ) αCn (X )

The maps in the composition above are given as follows.

• Denote by ηX : X →ΩnΣn X the unit of the (Σn ,Ωn) adjunction. Then ∆X = Σn ◦
ηX ◦Ωn . Thus, a point [t ,ℓ] ∈ΣnΩn X = Sn ∧Map∗ (Sn , X ) maps to the point [t , ℓ̄] ∈
Sn ∧Map∗ (Sn ,ΣnΩn X ), where

ℓ̄ : Sn →ΣnΩn X s 7→ [s,ℓ].

• The second map ΣnΩn (αX ) maps the point [t , ℓ̄] to the point [t ,αX ◦ ℓ̄].

• The last map takes a point [t ,ℓ′], where ℓ′ : Sn →Cn (X ) is a loop, to the evaluation

αCn (X )[t ,ℓ′] : Cn(1) Cn (X )

c ℓ′
(
c−1(t )

)
Therefore, with the notation above, the full composition applied to a point [t ,ℓ] yields

[t ,ℓ] 7→ [t , ℓ̄] 7→ [t ,αX ◦ ℓ̄] 7→αCn (X )[t ,α◦ ℓ̄].

The resulting map
αCn (X )[t ,α◦ ℓ̄] : Cn(1) →Cn (X )

acts on a little n-cube c ∈Cn(1) by producing

c 7→ (
αX ◦ l̄

)(
c−1(t )

)=α[c−1(t ),ℓ] : Cn(1) → X ,

where c2 ∈Cn(1) gets mapped to

α[c−1(t ),ℓ](c2) = ℓ(
c−1

2

(
c−1(t )

))
.

The right hand side of Equation (1.16) is the composition
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ΣnΩn X Cn (X ) Cn (Cn (X ))
αX ∆′

X

The first map in the composition above was given in Equation (1.15). The map ∆′
X ,

described in Proposition 1.2.10, applies an arbitrary map h : Cn(1) → X to the map
h̄ : Cn(1) →Cn (X ) given by

µ ∈Cn(1) 7→ h̄(µ) : Cn(1) → X , h̄(µ)(θ) := h
(
γ

(
µ;θ

))
.

In particular, ∆′
X applies the map αX [t ,ℓ] to the map

∆′
X (αX [t ,ℓ]) : Cn(1) Cn (X )

c ∆′
X (αX [t ,ℓ]) (c) =α[t ,ℓ](c) : Cn(1) X

c2 ℓ
(
γ (c;c2)−1 (t )

)
Since, by definition of the composition in the little cubes operad,

ℓ
(
c−1

2

(
c−1(t )

))= ℓ(
γ (c;c2)−1 (t )

)
for all little cubes c,c2, the claim is proven.
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CHAPTER 2

Higher-order Massey products for algebras over algebraic operads

Abstract

We introduce higher-order Massey products for algebras over algebraic operads. This
extends the work of Fernando Muro on secondary ones. We study their basic properties and
behavior with respect to morphisms of algebras and operads and give some connections
to formality. We prove that these higher-order operations represent the differentials in a
naturally associated operadic Eilenberg–Moore spectral sequence. We also study the inter-
play between particular choices of higher-order Massey products and quasi-isomorphic
P∞-structures on the homology of a P -algebra. We focus on Koszul operads over a char-
acteristic zero field and explain how our results generalize to the non-Koszul case.

2.1 Introduction

In [61], reprinted as [62], W. S. Massey introduced the classical triple Massey product, a
secondary operation on the (co)homology of differential graded associative algebras. He
used this new operation to show that the Borromean rings are non-trivially linked. Similar
secondary operations were defined independently by Allday and Retah on the homology
of differential graded Lie algebras, see [2, 3, 77]. The existence of these higher-order prod-
ucts is due to the vanishing of certain equations that follow from the associativity and
Jacobi relations at the chain level, respectively. Recently, F. Muro has shown that secondary
operations analogous to Massey’s in the case of associative algebras on the homology of
differential graded algebraic structures are not ad-hoc at all [69]. Indeed, the theory of
algebraic operads explains and organizes the existence and construction of these opera-
tions. An algebraic operad is an operad in the symmetric monoidal category of Z-graded
vector spaces over a characteristic zero field, and will be assumed to be Koszul. In loc. cit.,
Muro defines secondary Massey products for algebras over algebraic operads. Given an
algebraic operad P , each quadratic relation in the presentation of P defines a secondary
Massey-product-like operation on the homology of the P -algebras. This secondary opera-
tion takes as many inputs as the arity of the relation. In this way, the associativity relation of
the associative operad yields the classical triple Massey products, while the Jacobi identity
relation of the Lie operad yields the Lie–Massey brackets. Under this new point of view,
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Muro uncovered secondary Massey-product-like operations for many distinct types of
algebras for the first time, and gave applications to hyper-commutative and Gerstenhaber
algebras.

In Muro’s paradigm, there is no restriction as to the arity of the relation. Thus, a relation
Γ of arity r in a presentation of an operad P produces a Massey-product-like operation
with r inputs 〈−, ...,−〉Γ on the homology of the P -algebras. However, this still left the
definition of higher-order Massey product operations unclear. This is where our work
enters the picture. It is well-known that the triple Massey product is just the first in an
infinite series of higher-order operations on the homology of differential graded associative
algebras, roughly witnessing the different ways in which an n-fold product in homology
vanishes as a consequence of associativity. These higher-order products have been shown
many times to be essential in a wide range of topics where triple Massey products are
not enough, see for example the survey [54]. In particular, they are concrete tools for
computations when a fully-fledged A∞-structure is not available.

In this work, we introduce and study higher-order Massey products for algebras over
algebraic operads. These higher operations include Muro’s secondary ones, and gather
together to form the hierarchy of higher operations on the homology of algebras over
algebraic operads mentioned before. Our approach generalizes the fruitful framework of
higher-order Massey products for differential graded associative algebras to algebras over
any algebraic operad, producing a new tool to perform computations in many kinds of
differential graded algebras.

The importance of these higher-order operations seems to have been neglected due
to a widespread misconception. This misconception consists of thinking that, whenever
a higher-order Massey product set 〈x1, ..., xr 〉 on the homology of a differential graded
associative algebra is defined, then any transferred A∞-structure {mr } on the homology of
this differential algebra via the homotopy transfer theorem satisfies

±mr (x1, ..., xr ) ∈ 〈x1, ..., xr 〉. (2.1)

This is true only for the triple Massey product, but fails in general [16]. Algebras over oper-
ads other than the associative one behave in the same manner (Theorem 2.4.2). This fact
makes the higher-order operations defined in this chapter important, filling a fundamental
gap in the understanding of the homology of differential graded algebraic structures. Being
slightly more precise, we show that if the homology of an algebra over a Koszul operad P is
endowed with a P∞-algebra structure quasi-isomorphic to the original structure, then the
P∞-algebra structure maps recover higher-order Massey products only up to lower-arity
P∞-algebra structure maps. We also prove, however, a positive result in this direction: for
any choice of class in a higher-order Massey product set, one can make appropriate choices
in the homotopy transfer theorem so that the induced P∞ structure on the homology of
the P -algebra recovers this choice exactly by Formula (2.1).

Let us briefly explain how these higher-order Massey products arise. Let P be a Koszul
operad with Koszul dual cooperad P

¡ (we explain in Remark 2.2.16 how to deal with the
non-Koszul case). Each weight-homogeneous cooperation Γc of P

¡ gives rise to a partially
defined higher operation 〈−, ...,−〉Γc on the homology of any P -algebra. The number of
inputs of this operation is the arity r of Γc . If A is a P -algebra, then out of homogeneous
elements x1, ..., xr ∈ H∗(A), the operation gives a (possibly empty) set of homology classes

〈x1, ..., xr 〉Γc ⊆ H∗(A).
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The non-emptiness depends on the vanishing, in a precise sense, of higher operations of
the same kind that arise from Γc and have strictly lower weight-degree. We call 〈x1, ..., xr 〉Γc

the Γc -Massey product of the classes x1, ..., xr . The process to construct the Γc -Massey
product operation 〈−, ...,−〉Γc is done by a non-trivial analogy with the case of differential
graded associative algebras. To wit, the cooperation Γc determines a set of indices I (Γc )
which is then used to form defining systems. Fixed a P -algebra A and homogeneous
elements x1, ..., xr ∈ H∗(A), where r is the arity of Γc , a defining system for the Γc -Massey
product 〈x1, ..., xr 〉Γc is a coherent choice of elements {aα} of A indexed by I (Γc ) that
conspire together to create a cycle. Running over all possible choices of defining systems
for x1, ..., xr , we obtain all possible representatives of the homology classes in the set
〈x1, ..., xr 〉Γc . This construction is the core of the chapter, and it is performed in Section 2.2.
Since the details are quite technical, we skip them for the moment and refer the reader to the
mentioned section. There, we give explicit examples, including the case of the associative,
commutative, Lie, and dual numbers operads. We prove that our framework generalizes
Muro’s in Proposition 2.2.9. In Section 2.2.1, we study the basic properties enjoyed by these
new operations. For example, we prove that morphisms of P -algebras preserve higher-
order Massey products, and that quasi-isomorphisms induce a bijective correspondence
between them. This makes the higher-order Massey products a useful tool in the study of
homotopy types of algebras over operads; in particular, they can be used to study formality-
type results. In Section 2.2.2, we explain how higher-order Massey products behave with
respect to morphisms of operads. Under mild assumptions, higher-order Massey products
can be pulled back and forward along morphisms of operads. This allows one to relate
the formality (or more generally, the quasi-isomorphism class) of an algebra of a certain
type to the formality (or quasi-isomorphism class) of a functorially associated algebra of a
distinct type. The reader can have in mind the adjoint pair between taking the universal
enveloping differential graded associative algeba of a differential graded Lie algebra, and
forming the commutator bracket of a dg associative algebra. Under some hypotheses, one
can relate formality and quasi-isomorphism classes in both directions.

We prove some further results related to higher-order Massey products. It is a well-
known and celebrated result that higher-order Massey products for associative algebras
provide a concrete description of the differentials in the Eilenberg–Moore spectral sequence.
In Section 2.1.1.1, we explain how to construct an Eilenberg–Moore-type spectral sequence
for any algebra over an algebraic operad. Under mild hypotheses, this spectral sequence
computes the Quillen homology of the algebras over this operad. The spectral sequence
is then exploited in Section 2.3. Our main result in this direction is Theorem 2.3.2, which
proves that the higher-order Massey products defined in this chapter provide concrete
representatives for the differentials in this Eilenberg–Moore-type spectral sequence. To
finish the chapter, we give in Section 2.4 a precise relationship between the higher-order
Massey products on the homology of a P -algebra, and transferred P∞-structures on it.

Notation and conventions

In this chapter, all algebraic structures are taken over a base field k of characteristic zero. We
work on the category of unbounded chain complexes over k with homological convention.
That is, the differential d : A∗ → A∗−1 of a chain complex (A,d) is of degree −1. The degree
of a homogeneous element x is denoted by |x|. The suspension of a chain complex (A,dA)
is the chain complex (s A,ds A) = (ks ⊗ A,1⊗d), where s is a formal variable of degree 1.
For a homogeneous element a ∈ A, we denote sa = s ⊗ a ∈ s A. Thus, (s A)∗ ∼= A∗−1, and
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ds A (sa) =−sdA(a) for every such a ∈ A. The symmetric group on n elements is denoted
Sn . The operads in this chapter are taken in the symmetric monoidal category of Z-graded
vector spaces, and therefore have zero differential. In this monoidal category, we follow the

Koszul sign rule. That is, the symmetry isomorphism U ⊗V
∼=−→ V ⊗U that identifies two

graded vector spaces is given on homogeneous elements by u⊗v 7→ (−1)|u||v |v⊗u. Algebras
over operads are always differential graded (dg) and homological. We will frequently omit
the adjective "dg" and assume it is implicitly understood. The reason for choosing the
operads to have trivial differential is that in this case, the homology of any dg P -algebra is a
graded (non-dg) P -algebra again. If f : A → B is a morphism of differential graded algebras
over an operad, then we denote by f∗ : H∗(A) → H∗(B) the induced map in homology.

2.1.1 Preliminaries

In this section, we collect some of the prerequisites for understanding this chapter. We start
in Section 2.1.1.1 by giving a brief recollection of the results of operad theory that we will
make use of, mainly to establish our notation. We borrow most of the notation from [56],
which is an excellent reference for algebraic operads. A non-standard topic explained in
this section is the construction of the Eilenberg–Moore-type spectral sequence mentioned
in the introduction. In Section 2.1.1.2, we recall the higher-order Massey products for
differential graded associative algebras. To finish, we briefly summarize in Section 2.1.1.3
the construction of the secondary Massey products for algebras over algebraic operads as
defined by Muro in [69].

2.1.1.1 Operadic background

In this chapter, we work with operads in the symmetric monoidal category of graded vector
spaces. Our generic operad P is therefore arity-wise made up of Z-graded vector spaces,
but it has no differential. That is, we work with non-dg operads. The reason is that if A is a
P -algebra, we will need A and its homology H∗(A) to be algebras over the same operad.
Our operads will always satisfy P (0) = 0, except for theorems 2.1.2 and 2.4.2, where they
need to be reduced. Recall that an operad P is reduced if P (0) = 0 and P (1) = k.

This chapter will assume familiarity with the results and notation from [56], and we will
adopt its notation for most of the objects used in this chapter (infinitesimal compositions,
twisting morphisms, weight gradings, and Koszul duality). We shall briefly sketch only
those results that will be essential to understand this chapter.

Quadratic and Koszul operads. A symmetric sequence E is reduced if E(0) = E(1) = 0. An
operad P is quadratic if it is given by a presentation F (E ,R), that is, if it is given as the
quotient F (E)/(R) of the free operad F (E) on the reduced symmetric sequence E by the
operadic ideal of relations generated by a sub S-module of relations R ⊆ F (E)(2). Here,
F (E)(n) is the sub S-module of F (E) formed by elements of weight n, that is, formed by
combining exactly n generating operations from E . The free operad F (E ) comes equipped
with a weight grading concentrated in non-negative degrees. Since the operadic ideal
(R) is homogeneous with respect to the weight grading of F (E) and P is a quotient of
F (E), the weight grading of F (E) naturally descends to P . The degree n component of
this weight grading on P will be denoted P (n). Similarly, one can construct the cofree
conilpotent cooperad F c (E ). To do so, consider the same underlying symmetric sequence
F (E), endowed with the same weight-grading. Dually, we can consider the conilpotent
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sub-cooperad F c (E ,R) of F c (E ) which is final among the conilpotent sub-cooperads C of
F c (E) equipped with a morphism of S-modules C → E such that the composite

C ,→F c (E)↠F c (E)(2)/R

is 0. The weight grading of F c (E ) restricts to the sub-cooperad F c (E ,R), and the degree n
component of this weight grading on F c (E ,R) will be denoted F c (E ,R)(n). In particular,
and this will be important later, the weight 2 component of F c (E ,R) is precisely the
submodule of co-relations R,

F c (E ,R)(2) = R.

We call F c (E ,R) the cofree conilpotent cooperad cogenerated by E with corelations R. A
cooperad C is quadratic if it is given by a presentation F c (E ,R) as above, that is, if is is
given as the subcooperad of F c (E) just described. Let P =F (E ,R) be a quadratic operad.
Its Koszul dual cooperad is defined as

P
¡ =F c (

sE , s2R
)

.

The canonical twisting morphism is the degree −1 morphism of S-modules κ : P
¡ → P

given by the composite

κ : F c (
sE , s2R

)
↠ sE

s−1

−−→ E →F (E ,R) .

If P is augmented, then we can functorially associate to it a quasi-free differential graded
conilpotent cooperad BP , called the bar construction of P . If P is quadratic, then it is
naturally augmented, and the Koszul dual cooperad P

¡ is a subcooperad of BP with trivial
differential. The operad P is Koszul if the inclusion P

¡
,→ BP is a quasi-isomorphism.

The cooperad BP , being differential graded, has a homology cooperad H∗ (BP ). This
homology admits an extra cohomological degree called the syzygy degree. It can be seen
that P is Koszul if, and only if, H 0 (BP ) ∼=P

¡. The assignment of a Koszul dual cooperad is
functorial on weighted operads as long as the morphisms of operads preserve the weight.

P∞-structures and Quillen homology. In this section, we discuss several ways to present
a P∞-structure on a chain complex A for a given Koszul operad P , and define the Quillen
homology of a P -algebra. A convenient choice of model for P∞ is the cobar construction
ΩP

¡, where P
¡ is the Koszul dual cooperad of P . Recall that the cobar construction is

the right adjoint of the bar construction B , mapping onto the category of augmented
differential graded operads. A P∞ structure on A is therefore a morphism of differential
graded operads ΩP

¡ → EndA , where EndA is the endomorphism operad of A. Under
this point of view, we can think of a P∞-algebra structure on A as a family of operations{

A⊗n → A
}

parametrized by the operad ΩP
¡.

By the Rosetta Stone Theorem [56, Theorem 10.1.13], an equivalent approach, and the
one which we shall use in the rest of this document, is to define a P∞-algebra to be a chain
complex A along with a degree −1 square zero coderivation

δ : P
¡
(A) →P

¡
(A) .

Briefly recall that if A is a P -algebra, then P
¡
(A) is a quasi-free P

¡-coalgebra whose
coderivation codifies the internal differential of A as well as its P -algebra structure. The
coderivation is meant as a P

¡-coalgebra, and we explain next how to understand this. Since
it squares to zero, we might call it the codifferential of P

¡
(A). It will often be convenient to
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present δ in two different ways. Firstly, as a collection of linear maps δr : P ¡(r )⊗ A⊗r → A,
for r ≥ 1, where each δr is the composition

P
¡
(r )⊗ A⊗r ,→ ⊕

k≥1
P

¡
(k)⊗ A⊗k =P

¡
(A)

δ−→P
¡
(A)

ϵA−→ A.

Here, ϵ is the counit of the P
¡ comonad. The coderivation δ can be reconstructed from the

family {δr }r≥1 as the map

P
¡
(A)

△(1)−−→
(
P

¡ ◦(1) P
¡
)

(A) =P
¡ ◦

(
A;P

¡
(A)

)
id◦(id;m)−−−−−−→P

¡ ◦ (A; A) →P
¡
(A) .

Here, △(1) is the infinitesimal decomposition coproduct of P
¡, see [56, §6.1.4], and m is the

map (δr )r≥1 :
⊕

r≥1 P
¡(r )⊗ A⊗r → A induced by the universal property of the coproduct of

the underlying graded vector spaces. Secondly, we can present δ as a collection of degree
n −2 linear maps δ(n) : P ¡(A)(n) → A, for n ≥ 1, where each δ(n) is the composition

P
¡
(A)(n) ,→P

¡
(A)

δ−→P
¡
(A)

ϵA−→ A,

and where P
¡(A)(n) consists of the weight n part of P

¡(A),

P
¡
(A)(n) = ⊕

r≥n

(
P (n)(r )⊗Sr A⊗r )

.

To reconstruct δ from the family
{
δ(n)

}
n≥1, one proceeds mutatis mutandis as in the case

of {δr }r≥1.

The object (P ¡(A),δ) is called the operadic chain complex. The Quillen homology of
a P -algebra A is the homology H∗

(
P

¡(A),δ
)

of this operadic chain complex. It forms a
(non-differential) graded P

¡-coalgebra.

A P∞-algebra A is a strict P -algebra if the map m factors through the canonical twisting
morphismκ : P ¡ →P . Conversely, any P -algebra A can be seen as a P∞-algebra by pulling
back its algebra structure along the morphism of operads ΩP

¡ →P .

A P∞-morphism is a map of (dg) P
¡-coalgebras F :

(
P

¡
(A) ,δ

)→ (
P

¡(B),δ′
)
. As in the

case of a codifferential on a P
¡-coalgebra, it will often be convenient to present F as a

collection of linear maps Fn : P ¡(n)⊗ A⊗n → B , for n ≥ 1, where each Fn is the composition

P
¡
(n)⊗ A⊗n ,→ ⊕

k≥1
P

¡
(k)⊗ A⊗k =P

¡
(A)

F−→P
¡
(B)

ϵB−→ B.

The map F can be reconstructed from the family {Fn}n≥1 as the map

P
¡
(A)

△−→P
¡ ◦P

¡
(A)

P
¡( f )−−−−→P

¡
(B),

where f is the map (Fi )i≥1 :
⊕

i≥1 P
¡(n)⊗ A⊗n → B induced by the universal property of the

coproduct. Similarly, we can decompose by weight instead of arity to produce a collection
of degree n −1 linear maps F (n) : P ¡(A)(n) → B .

The P -Eilenberg–Moore spectral sequence. Let A be an algebra over a Koszul operad
P and H = H∗(A) be its homology. There is a spectral sequence, which we call the P -
Eilenberg–Moore spectral sequence, that computes the Quillen homology of A as long as
A is positively graded of finite type (which is implicitly assumed whenever we speak of
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convergence). It is constructed as follows. The operadic chain complex P
¡(A) admits the

ascending filtration

FpP
¡
(A) =

p⊕
n=1

P
¡
(A)(n).

This filtration is bounded below and exhaustive. Therefore, the associated spectral se-
quence converges to the operadic homology of A as a graded module. The complex P

¡(A)
also has the structure of a conilpotent cofree P

¡-coalgebra with comultiplication ∆, which
respects the filtration in the sense that

∆
(
FpP

¡
(A)

)
⊆

p⊕
k=1

⊕
i1+···+ik=p

P
¡
(k)⊗

(
Fi1P

¡
(A)⊗·· ·⊗Fik P

¡
(A)

)
.

This further implies that each page of the spectral sequence inherits a P
¡-coalgebra struc-

ture, and furthermore, the spectral sequence converges as a P
¡-coalgebra. A morphism

of P
¡-coalgebras naturally induces a morphism of the corresponding spectral sequences.

The E 0-page of this spectral sequence is explicitly given by

E 0
p,q =

(
P

¡
(A)(p)

)
p+q

∼=
(⊕

r≥1

(
P

¡
)(p)

(r )⊗Sr A⊗r
)

p+q

where the p + q grading is induced from the internal grading of A. Under the isomor-
phism above, the differential d 0 is determined by the differential d of A, and there is an
isomorphism of differential bigraded modules(

E 0,d 0)∼= (
P

¡
(A),δ(1)

)
,

where abusing the notation, δ(1) stands for the coderivation of P
¡(A) induced by the weight

1 component of the codifferential δ. Taking homology of
(
E 0,d 0

)
, it follows that the E 1-page

of the spectral sequence is

E 1
p,q =

(
P

¡
(H∗ (A))(p)

)
p+q

and the differential on this page is therefore entirely determined by the weight 2 component
of the codifferential. In other words, we have that d 1 = H∗

(
δ(2)

)
. Taking homology again,

we finally have a spectral sequence starting from the Quillen homology of H and converging
to the Quillen homology of A.

E 2
p,q = Hp+q

(
P

¡
(H)(p)

) p====⇒ H∗
(
P

¡
(A),δ

)
.

While this definition seems to be original to this chapter for general operads, it has some
very well-known special cases. When P is binary, that is, generated by operations of arity
2, the weight grading coincides with the arity grading up to a shift. So, for example, when
P = Ass is the associative operad, the P -Eilenberg–Moore spectral sequence is exactly
the classical Eilenberg–Moore spectral sequence [26]. When P = Lie is the Lie operad, the
P -Eilenberg–Moore spectral sequence is exactly a classical Quillen spectral sequence that
appears in [75, (6.9) p. 262].

Remarks 2.1.1.
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1. If A is an algebra over a Koszul operad P , there are several spectral sequences closely
related to the one defined above. First, we can filter P

¡ by weight. This gives the
spectral sequence we studied above. Second, we can filter P

¡ by arity. This produces
a spectral sequence that coincides with the previous one up to a shift when the
operad is binary generated, or more generally, when the generators of the operad are
concentrated in a single arity. However, in general, these two spectral sequences differ.
Third, one can replace P

¡ with the bar construction BP and filter similarly. Since not
every operad is Koszul, this spectral sequence will be useful in those situations.

2. If A is a P∞-algebra, then the construction of the spectral sequence above goes
through with straightforward adjustments.

A version of the homotopy transfer theorem. In [72, Theorem 2], D. Petersen gave what
probably is the most general form of T. Kadeishvili’s version of the classical homotopy
transfer theorem [50] for algebras over binary algebraic operads. Adapted to our needs, it
reads as follows. In the statement, P is a reduced Koszul operad.

Theorem 2.1.2. Let (A,d) be a P -algebra, H its homology, and f : H → A a cycle-choosing
(and therefore necessarily degree 0) linear map. Let δA be the degree −1 square-zero coderiva-
tion of P

¡(A) representing the P -algebra structure on A whose arity 1 term equals the given
differential d. Then there exists noncanonically a square-zero degree −1 coderivation δ of
P

¡(H) whose arity 1 term vanishes, and a morphism of P
¡-coalgebras F : P ¡(H) →P

¡(A)
whose linear term F1 is f and which is a chain map with respect to the differentials defined
by δA and δ.

Sketch of the proof. The homology H is equipped with the structure of a P -algebra de-
scending from the P -algebra structure on A. This induces a degree −1 coderivation
δ1 : P

¡
(H) → P

¡
(H) whose arity 1 component δ1

1 is identically 0. Now, by induction,
assume that for some n ≥ 2, we have a degree −1 coderivation δn−1 : P ¡

(H) →P
¡
(H) and

a P
¡-coalgebra morphism F n−1 : P ¡

(H) →P
¡(A) with F1 = f , such that the restrictions of

δn−1 and F n−1 to Fn−1P
¡
(H) satisfy{

δn−1 ◦δn−1 = 0

F n−1 ◦δn−1 −δA ◦F n−1 = 0.

Above, ◦ denotes the usual composition of maps, not the operadic circle product. Write F 1

for the coalgebra map determined by f in arity 1 and vanishing in higher arities. Then δ1

and F 1 satisfy the identities above, providing the base case in the induction. The idea now
is to modify only the arity n terms of δn−1 and F n−1 to produce new δn and F n such that
the equations above are satisfied on FnP

¡(A). One can show that there are e and e ′ such
that (

F n−1 ◦δn−1 −δA ◦F n−1)
n = f ◦e +de ′

where e ∈ Hom(P ¡(n)⊗H⊗n , H) and e ′ ∈ Hom(P ¡(n)⊗H⊗n , A). Therefore, we can define

δn
i =

{
δn−1

i for i ̸= n.

δn−1
n −e for i = n.

In fact, e may be computed as the projection of
(
F n−1 ◦δn−1 −δA ◦F n−1

)
n onto H . Similarly,

we can define F n
n to be

F n
i =

{
F n−1

i if i ̸= n.

F n
n for any F n

n such that dF n
n = F n−1

n −e ′ when i = n.
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So defined, the coderivation δn and the coalgebra map F n satisfy the required conditions,
and the proof is complete.

2.1.1.2 Higher-order Massey products for associative algebras

The triple Massey product for differential graded associative algebras was introduced in
the fifties, see [87] and [61] (reprinted as [62]). Massey himself soon realized that the triple
product could be extended to n-fold Massey products [60], see also [64]. Our generalization
of the higher-order Massey products to algebras over algebraic operads has its roots in this
definition. Therefore, we find it convenient to devote this section to recall the higher-order
Massey products for differential graded associative algebras. Excellent references for this
topic include [52, 64, 76].

Let (A,d) be a differential graded associative algebra, and x1, x2 ∈ H∗(A) homogeneous
elements. The Massey product 〈x1, x2〉 is defined as the singleton {x1x2} formed by the
product of the two classes in H∗(A). It is also possible to identify the set {x1x2} with
the product x1x2 itself and define the Massey product of two homogeneous elements in
homology as their ordinary product. Let us define next the triple and higher-order Massey
products. First, we introduce the auxiliary notion of a defining system. A defining system
in the case of the Massey product of two homology classes 〈x1, x2〉 is just a choice {b1,b2}
of cycle representatives of x1 and x2.

Definition 2.1.3. Let (A,d) be a differential graded associative algebra, and x1, . . ., xn be
n ≥ 3 homogeneous elements in H∗(A). A defining system for the nth-order Massey product
of the classes x1, ..., xn is a set of homogeneous elements{

bi j
}⊆ A, for 0 ≤ i < j ≤ n and 1 ≤ j − i ≤ n −1,

defined as follows.

• (Initial step) For i = 1, . . .,n the element bi−1,i is a cycle representative of xi .

• (Inductive relation) For each 0 ≤ i < j ≤ n and 1 ≤ j − i ≤ n −1, the element bi j ∈ A
satisfies

d
(
bi j

)= ∑
0≤i<k< j≤n

(−1)|bi k |+1bi k bk j . (2.2)

The nth-order Massey product of the classes x1, ..., xn is the set

〈x1, . . ., xn〉 =
{[ ∑

0≤i<k< j≤n
(−1)|bi k |+1bi k bkn

]
| {

bi j
}

is a defining system

}
⊆ Hs+2+n(A),

where s =∑n
i=1 |xi |, and the bracket [−] denotes taking homology class.

The elements bi j of Equation (2.2) might not exist at all, in which case the Massey
product set is empty. The necessary and sufficient condition for 〈x1, . . ., xn〉 to be non-
empty is that for all 1 ≤ i < j ≤ n and 1 ≤ j − i ≤ n −2, the Massey product sets 〈xi , ..., x j 〉
are non-empty and furthermore contain the zero class.

The fact that for a fixed defining system the sum∑
0≤i<k< j≤n

(−1)|bi k |+1bi k bkn

defines a cycle is a straightforward check by applying d and using the inductive relations.
If there are no defining systems for the classes x1, ..., xn , their Massey product 〈x1, . . ., xn〉 is
defined as the empty set, or it is said to be undefined.
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A similar definition for higher Lie–Massey brackets on the homology of a differential
graded Lie algebra exists, see [2, 3, 15, 77, 86]. The main purpose of this chapter is to
provide a suitable generalization of Definition 2.1.3 to algebras over Koszul operads, see
Section 2.2.

2.1.1.3 Secondary Massey products for algebras over algebraic operads

In this section, we briefly outline Muro’s definition of secondary Massey products for
algebras over algebraic operads. Our eventual definition of Massey products for algebras
over operads, Def. 2.2.7, is shown to extend the one below in Proposition 2.2.9.

Definition 2.1.4. ([69, Def. 2.1]) Let P = F (E ,R) be a Koszul operad generated by the
reduced symmetric sequence E with quadratic relations R ⊆F (E)(2). Fix

Γ=∑(
µ(1) ◦k µ

(2)) ·σ
a relation of arity r of R. Here, µ(i ) ∈ E(ri ), with r1 + r2 = r +1, the symbol ◦k denotes the
k-th partial composition product, 1 ≤ k ≤ r1, and σ ∈ Sr . Let A be a P -algebra and let
x1, ..., xr ∈ H∗(A) be homogeneous elements such that

µ(2) (xσ−1(k), . . . , xσ−1(k+r2−1)
)= 0 (2.3)

in H∗(A) for each term in the relation. For each 1 ≤ i ≤ r , fix yi ∈ A a cycle representative of
xi and, for each summand in the relation, let ρ(2) ∈ A be an element such that

dρ(2) =µ(2) (yσ−1(k), . . . , yσ−1(k+r2−1)
)

(2.4)

in A. Such an element exists by Equation (2.3). The Γ-Massey product set 〈x1, . . . , xr 〉Γ is the
set of homology classes represented by cycles of the form∑

(−1)γµ(1) (yσ−1(1), . . . , yσ−1(k−1),ρ
(2), yσ−1(k+r2), . . . , yσ−1(r )

)
,

where

γ=α+|µ(1)| + (|µ(2)|−1
) k−1∑

m=1
|xσ−1(m)|, α= ∑

i< j
σ(i )>σ( j )

|xi ||x j |.

for all possible coherent choices of elements ρ(2).

Muro shows that the definition above recovers the usual triple Massey products for
differential graded associative algebras when Γ is the associativity relation of the associative
operad, and the triple Lie–Massey brackets for differential graded Lie algebras when Γ is
the Jacobi relation of the Lie operad.

The perspective we take to construct higher-order Massey products for algebras over
algebraic operads differs significantly from the construction of Muro just explained. Muro
uses the form of relations defined using partial composition. The definition does not
depend exclusively on the relation Γ, but also on a specific choice of expansion of Γ in
terms of the partial compositions. This choice is not unique. Our approach is also affected
by a choice in the explicit form of the higher relations. To generalize, we prefer to see such
relations as the weight 2 cooperations in the Koszul dual cooperad of P , and work with
defining systems in a similar way as in Definition 2.1.3. This makes our formulas easier
to write in the usual language of algebraic operads and Koszul duality theory. To take
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into account the dependency of the higher relations on a presentation, we will assume all
through that a k-linear basis of the symmetric sequence E has been fixed, and then there is
an induced basis on F c (sE) given by symmetric tree monomials. This will be recalled in
the corresponding section. We show in Proposition 2.2.9 that the secondary case of our
definition coincides with Muro’s definition.

2.2 Higher-order operadic Massey products

In this section, we define higher-order Massey products for algebras over algebraic operads.
We focus on the case of Koszul operads and explain in Remark 2.2.16 how to deal with
the non-Koszul case. We recommend familiarity with the classical higher-order Massey
products for differential graded associative algebras recalled in Section 2.1.1.2.

Let P =F (E ,R) be a Koszul operad with Koszul dual cooperad P
¡ =F c (sE , s2R). We

will assume all through the chapter that a k-linear basis of E has been fixed. Then, there are
induced bases on F (E) and on F c (sE) given by appropriate symmetric tree monomials,
see [24, Section 2.4]. These bases will also be fixed once and for all. Since P

¡ ⊆F c (sE), we
will use this basis to linearly expand the elements of P

¡ in our results.
As mentioned in the introduction, each weight-homogeneous cooperation Γc of P

¡

creates a partially defined higher-order operation 〈−, ...,−〉Γc on the homology of any P -
algebra, with as many inputs as the arity r of Γc . Out of homogeneous elements x1, ..., xr ∈
H∗(A) on the homology of a P -algebra A, this operation creates a (possibly empty) set of
homology classes

〈x1, ..., xr 〉Γc ⊆ H∗(A).

The non-emptiness depends on the vanishing, in a precise sense, of strictly lower-order
operations of the same kind that depend on Γc . The set 〈x1, ..., xr 〉Γc is called the Γc -Massey
product of the classes x1, ..., xr .

To construct the Γc -Massey product operation 〈−, ...,−〉Γc , we proceed as follows. First,
the cooperation Γc determines a set of indices I (Γc ) which is then used to form defining
systems. A defining system for the concrete Γc -Massey product set 〈x1, ..., xr 〉Γc is a coherent
choice of elements {aα} of A indexed by I (Γc ) that are combined to create a cycle. The ho-
mology classes contained in 〈x1, ..., xr 〉Γc are obtained by running over all possible choices
of defining systems for x1, ..., xr and taking the homology class of the associated cycle.

The section is organized as follows. First, we introduce the Massey inductive map. This
map depends on the coproduct of P

¡ and a fixed twisting morphism κ : P
¡ → P . It is

an essential ingredient when dealing with the inductive definitions that follow. Then, we
define the indexing set I (Γc ) associated to an arbitrary cooperation Γc and compute some
examples. Once the concept of indexing sets is established, we proceed to explain what a
defining system is and give examples of them. Then, we define the higher-order Γc -Massey
products, and compute examples including the associative, commutative, Lie, Poisson,
and dual numbers operads. Later on, we show that our higher-order Massey products
framework includes Muro’s [69] (Prop. 2.2.9). We study the elementary properties of these
higher-order products in Section 2.2.1. These include the behavior along morphisms of P -
algebras, quasi-isomorphisms, and some connections to formality. Some further properties
are explored in Section 2.2.2. There, we focus on the behavior of the higher-order Massey
products along morphisms of operads and give some applications to formality.
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Recall that the decomposition map ∆ : C →C ◦C of any counital cooperad C can be
uniquely written as

∆(c) =∆+(c)+ (id;c)

for every arity-homogeneous c ∈C . Here, id ∈C (1) is the element that corresponds to the
identity element 1 of the ground field k under the linear isomorphism C (1) → k induced
by the counit. We call ∆+ the half-reduced decomposition map of C .

Definition 2.2.1. The Massey inductive map is the degree −1 map

D : F c (sE)
∆+
−−→F c (sE)◦F c (sE)

κ◦id−−−→ E ◦F c (sE) .

Applied to some cooperation µ, we shall write

D
(
µ
)=∑

(ζ;ζ1, . . . ,ζm ;σ) , (2.5)

where ζ ∈ E(m), ζi ∈F c (sE) (vi ), σ ∈Sm and v1 +·· ·+ vm is equal to the arity of µ.

The sum in Equation (2.5) is indexed over all ζ along the chosen basis of E , and each
term may have a k-coefficient (possibly 0). The map D is inductive in the sense that, for
any cooperation µ, the cooperations ζ1, . . . ,ζm appearing on the terms of D

(
µ
)

will each
always have weight strictly less than that of µ. This will allow us to establish the inductive
relations of our defining systems later on. If P is a Koszul operad, then the fact that P

¡ is a
subcooperad of F c (sE) allows us to restrict the Massey inductive map to a map

D : P
¡ ∆+
−−→P

¡ ◦P
¡ κ◦id−−−→ E ◦P

¡
.

Abusing the notation, we call this restriction the Massey inductive map too, and use the
same symbols to denote the maps that constitute it.

As mentioned before, the cofree conilpotent cooperad F c (sE ) has a fixed combinatorial
description in terms of rooted tree monomials whose internal vertices are labeled by
elements of sE . Each such tree monomial has a first vertex, which is the unique child of the
root and corresponds to the first generating cooperation to be applied. The action of D
is determined by sending any tree monomial T to

(
s−1x;T1, . . .Tm

)
, where x ∈ (sE) (m) is

the label of the first vertex of T , and T1, . . . ,Tm are the tree monomials attached to this first
vertex of T . Intuitively, the Massey inductive map is trimming level 1 edges. See figures 2.1
and 2.2.

Next, we introduce the set associated with a cooperation of P
¡ that will provide the in-

dices for our defining systems. It is defined by induction on the weight of arity-homogeneous
cooperations of P

¡, with the Massey inductive map providing the necessary inductive step.

Definition 2.2.2. Let Γc ∈P
¡(r ) be a weight-homogeneous cooperation. For each tuple

(k1, ...,kr ) ∈N, we define the Γc -indexing set I (Γc , (k1, ...,kr )) by induction on the weight
w (Γc ) of Γc as follows.

• If w (Γc ) = 0, then I (Γc , (k1, ...,kr )) =;.

• If w (Γc ) = 1, then I (Γc , (k1, ...,kr )) = {(id, (k1)) , ..., (id, (kr ))}.

Assume next that I (Γc , (k1, ...,kr )) has been defined for cooperations up to weight n, and
suppose Γc is of weight n +1. If

D
(
Γc)=∑

(ζ;ζ1, . . . ,ζm ;σ)

as in Equation (2.5), and the leaves on top of each ζi are labeled l1, ..., lvi , then

I
(
Γc , (k1, ...,kr )

)
:=

m⋃
i=1

I
(
ζi ,

(
kl1 , ...,klvi

))
∪

{(
ζi ,

(
kl1 , ...,klvi

))}
.
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The super index c in Γc indicates that we are seeing the corresponding element in the
Koszul dual cooperad of P . At a later place, we will see this same element as a relation Γ in
the free operad F (E). Since we will need to distinguish between these two elements, we
keep the super index in the notation.

Figure 2.1: The Massey inductive map for Ass

Figure 2.2: The Massey inductive map for Lie

The following elementary observation will be the base case of the inductive definition
of defining systems below. We record this fact before giving some explicit examples.

Remark 2.2.3. If P is any Koszul operad and Γc ∈ (
P

¡)(1)
(r ) = (sE) (r ) is any cogenerator

of arity r , then the Γc -indexing set is always given by

I
(
Γc , (k1, ...,kr )

)= {(id, (k1)), ..., (id,(kr ))} .

Let us illustrate the definition of indexing sets with some examples.

Example 2.2.4. Let P =Ass. Then the weight n component of P
¡ is freely generated as an

Sn+1-module by a single generator µc
n+1 ∈Ass

¡
(n +1). Recall that

∆
(
µc

n

)= ∑
i1+···+ik=n

(−1)
∑

(i j+1)(k− j )
(
µc

k ;µc
i1

, . . .µc
ik

; id
)

.

Here, we denote µc
1 = id ∈ Ass

¡
(1). Since κ

(
µc

2

) = µ2 and κ
(
µc

k

) = 0 for k ≥ 3, this implies
that

D
(
µc

n

)= ∑
i1+i2=n

(−1)i1+1
(
µ2;µc

i1
,µc

i2
; id

)
.

This means that the defining system I
(
µc

n

)
contains the elements

(µc
i1

, (1,2, . . . , i1)) and (µc
i2

, (n − i2,n − i2 +1, . . . ,n)),

where i1 + i2 = n. By iterating this process, we see that

I
(
µc

n

)= {(
µc

k , (i , i +1, . . . , i +k −1)
) | k < n and i ∈ {1,2, . . . ,n −k −1}

}
.

□

89



Example 2.2.5. Let P = Lie. Then the weight n part of P
¡ is one-dimensional and gener-

ated by τc
n+1 ∈ Lie

¡
(n +1). Recall that

∆
(
τc

n

)= ∑
i1+···+ik=n

σ∈Sh
−1

(i1,...,ik )

(−1)
∑

(i j+1)(k− j ) sgn(σ)
(
τc

k ;τc
i1

, . . .τc
ik

;σ
)

,

where Sh
−1

(i1, . . . , ik ) is the set of reduced unshuffles. Here, an unshuffle is the inverse
of a shuffle, and reduced signifies that we are considering only those shuffles that fix the
position of the first element, i.e. σ(1) = 1. Since κ(τc

2) = τ2 and κ(τc
k ) = 0 for k ≥ 3, this

implies that

D
(
τc

n

)= ∑
i+ j=n

σ∈Sh
−1

(i , j)

(−1)i+1 sgn(σ)
(
τ2;τc

i ,τc
j ;σ

)
.

This means that the defining system I
(
τc

n

)
contains the elements(

τc
i , (σ(1),σ(2), . . . ,σ(i ))

)
and

(
τc

j ,
(
σ(n − j ),σ(n − j +1), . . . ,σ(n)

))
for each reduced shuffle σ ∈ Sh

(
i , j

)
with i + j = n. In this step, we changed from using

unshuffles to shuffles, because there is an inversion involved. By iterating this process, we
find that

I
(
τc

n

)= {(
τc

k , (i1, . . . ik )
) | k < n and 1 ≤ i1 < ·· · ≤ il < n

}
.

□
As mentioned before, each cooperation Γc of weight n in the Koszul dual cooperad P

¡

of P produces a partially defined n-th order operation 〈−, ...,−〉Γc on the homology H∗(A)
of a P -algebra A. This higher operation has r inputs, where r is the arity of Γc , and the
output is the set of homology classes created from all possible choices of defining systems,
generalizing the case of associative algebras of Section 2.1.1.2. Our next task is to explain
what the defining systems are. Each defining system will depend on a weight-homogeneous
cooperation Γc of arity r and r homogeneous homology classes x1, ..., xr ∈ H∗(A). Their
definition is given by induction on the weight of the cooperation.

Definition 2.2.6. Let Γc ∈ (
P

¡)(n)
(r ) for some n ≥ 1, A a P -algebra, and x1, ..., xr ∈ H∗(A)

homogeneous elements. AΓc -defining system (associated to x1, ..., xr ) is a collection {aα}α∈I (Γc )

of elements of A indexed by I (Γc ) such that:

1. Each a(id,(i )) ∈ A is a cycle representative for xi ∈ H∗(A).

2. For each index
(
µ, (k1, · · · ,ki )

) ∈ I (Γc ) withµ ̸= id, the corresponding element a(µ,(k1,··· ,ki ))
is such that

d
(
aµ,(k1,··· ,ki )

)=∑
ζ

(
a(
ζ1,

(
kσ−1(1),...,kσ−1(v1)

)), . . . , a(
ζm ,

(
kσ−1(v1+···+vm−1+1),...,kσ−1(i )

))) ,

where D
(
µ
)=∑

(ζ;ζ1, . . . ,ζm ;σ).

Next, we use the defining systems explained above to define the Γc -Massey products.
If the cooperation Γc is of weight 1 and arity r , that is, a cogenerator, then Γ = κ(Γc ) is
a generator of P . For any homogeneous elements x1, ..., xr ∈ H∗(A), we define their Γc -
Massey product as the set

〈x1, ..., xr 〉Γc := {Γ(x1, ..., xr )}.

We may also identify this set with its unique element Γ(x1, ..., xr ) ∈ H∗(A). Let us define the
Γc -Massey products for elements of weight ≥ 2.
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Definition 2.2.7. Let A be a P -algebra, Γc ∈ (
P

¡)(n)
(r ) with n ≥ 2, and x1, ..., xr homoge-

neous elements of H∗(A). Then:

1. The Γc -Massey product associated to a Γc -defining system {aα} and x1, ..., xr is the
homology class of the cycle

aΓc ,(1,...,r ) :=∑
(−1)γζ

(
aζ1,(σ−1(1),σ−1(2),...,σ−1(v1)), . . . , aζm ,(σ−1(v1+···+vm−1+1),...,σ−1(r ))

)
,

(2.6)

where D (Γc ) =∑
(ζ;ζ1, . . . ,ζm ;σ), and the sign is given by

γ=α+
m∑

i=2
(|ζi |−w(ζi ))

(
v1+···+vi−1∑

k=1
|xσ−1(k)|

)
+1, α= ∑

i< j
σ(i )>σ( j )

|xi ||x j |,

where w(ζi ) is the weight of ζi .

2. The Γc -Massey product set 〈x1, . . . , xr 〉Γc is the (possibly empty) subset of H∗(A) formed
by the homology classes arising from all possible choices of Γc -defining systems {aα}
associated to x1, ..., xr .

The next result shows that the proposed definition is correct. As a consequence of
it, we readily see from the definition of defining systems that the Γc -Massey product set
〈x1, ..., xr 〉Γc is non-empty if, and only if, for all (µ;k1, . . .ki ) ∈ I (Γc ), the Massey product set
〈xk1 , . . . , xki 〉µ is defined and contains the zero class.

Proposition 2.2.8. Let A be a P -algebra, Γc ∈ (
P

¡)(n)
(r ) for some n ≥ 2, and x1, ..., xr

homogeneous elements of H∗(A). Then the Γc -Massey product x associated to any Γc -
defining system for x1, ..., xr is a cycle.

Proof. Let {aα} be a defining system, and denote by x the associated cycle given by formula
(2.6),

x =∑
(−1)γζ

(
aζ1,(σ−1(1),σ−1(2),...,σ−1(v1)), . . . , aζm ,(σ−1(v1+···+vm−1+1),...,σ−1(r ))

)
.

Let us compute d x in terms of the Massey inductive map D and terms of the form aµ,(k1,...ki ).
Recall that the differential of A fits into the commutative diagram

P ◦ A A

P ◦ A A

id◦′d

γA

d
γA

where ◦′ is the infinitesimal composite. From here, it follows that

d x = d
(∑

ζ
(
aζ1,(σ−1(1),σ−1(2),...,σ−1(v1)), . . . , aζm ,(σ−1(v1+···+vm−1+1),...,σ−1(r ))

))
is equal to

∑ m∑
i=1

(−1)ϵi ζ
(
aζ1,(σ−1(1),σ−1(2),...,σ−1(v1)), . . . ,d

(
aζi ,(σ−1(v1+···+vi−1+1),...,σ−1(v1+···+vi ))

)
, . . . aζm ,(σ−1(v1+···+vm−1+1),...,σ−1(r ))

)
,

where

ϵi = |ζ|+ |aζ1,(σ−1(1),σ−1(2),...,σ−1(v1))|+ · · ·+ |aζi−1,(σ−1(v1+···+vi−2+1),...,σ−1(v1+···+vi−1))|.
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Each term d
(
aζi ,(σ−1(v1+···+vi−1+1)),...,σ−1(v1+···+vi ))

)
appearing in the sum above can be rewrit-

ten in terms of aµ,(k1,...ki ) of lower order, by using the inductive relation of the defining
system (Def 2.2.6, item 2). In particular, if we consider the composite

G : P
¡ ∆+
−−→P

¡ ◦P
¡ κ◦id−−−→P ◦P

¡ f−→P ◦
(
P

¡
;P

¡
) id◦(id;∆+)−−−−−−−→P ◦ (P

¡
;P

¡ ◦P
¡
)

id◦(id;κ◦id)−−−−−−−−→
P ◦

(
P

¡
;P ◦P

¡
) p−→P ◦

(
P

¡
;P

¡
) q−→P ◦P

¡
,

where f is the natural inclusion (into the right factor of
(
P

¡;P ¡)), p is induced by the partial
composition in P , and q is the forgetful map, then the element d x is given by∑

ξ
(
aξ1,(σ−1(1),...,σ−1(v1)), . . . , aξm ,(σ−1(v1+···+vm−1+1),...,σ−1(r ))

)
,

where G(Γc ) =∑
(ξ;ξ1, . . . ,ξm ;σ). So to prove the result, it suffices to show that G is iden-

tically 0. We shall do this by showing that ImG ⊆ R ◦P
¡, where R is the sub-module of

relations in the fixed presentation P =F (E ,R). Recall that P
¡ can be thought of as a subset

of the tree module and all the maps defining G descend from maps on or between the free
operad on E and the cofree conilpotent cooperad on sE . It follows that we may describe G
combinatorially by giving its action on individual basis tree monomials T of F c (sE). This
action is as follows.

1. First, apply the Massey inductive map D. This is sending the tree monomial T to a
sum of tree monomials of the form

(
s−1e;T1, . . .Tm

)
, where e ∈ (sE)(m) is the label of

the first vertex and T1, . . . ,Tm are its children.

2. Now, repeat this procedure on each Ti individually, thereby obtaining sums of tree
monomials of the form

(
s−1ei ;Ti ,1, . . .Ti ,mi

)
, and take for each individual tree mono-

mial Ti the sum over the results to obtain

(−1)ϵi
m∑

i=1

(
s−1e;T1, . . . ,

(
s−1ei ;Ti ,1, . . .Ti ,mi

)
, . . .Tm

)
.

Here, each ei is the first vertex of the corresponding Ti .

3. The final step is to apply the partial composition in the free operad F (E) in order to
obtain

m∑
i=1

(
s−1e ◦i s−1ei ;T1, . . . ,Ti−1,Ti ,1, . . .Ti ,mi ,Ti+1, . . .Tm

)
.

This time, without the suspension.

From this description, it follows that there is another equivalent way to describe G :

• First, directly apply the cooperadic reduced decomposition map ∆+ to T to obtain

∆+(T ) =∑
(S;S1, . . .Sk ) .

• Then, project the first component of F c (sE)◦F c (sE) into weight 2. That is, map S to
itself if it is in weight 2, and map it to 0 otherwise. This produces

m∑
i=1

(
e ◦i ei ;T1, . . . ,Ti−1,Ti ,1, . . .Ti ,mi ,Ti+1, . . .Tm

)
.

• Desuspend the tree monomial e ◦i ei twice.
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From this description, it follows that

m∑
i=1

(
e ◦i ei ;T1, . . . ,Ti−1,Ti ,1, . . .Ti ,mi ,Ti+1, . . .Tm

) ∈P
¡(2) ◦P

¡
,

and thus that

m∑
i=1

(
s−1e ◦i s−1ei ;T1, . . . ,Ti−1,Ti ,1, . . .Ti ,mi ,Ti+1, . . .Tm

) ∈ R ◦P
¡
.

This is exactly what we wanted to prove.

In the next result, we show that our higher-order Massey products recover the secondary
Massey products defined by Muro in [69] when restricting to cooperations of weight 2,
up to a sign. The construction of Muro is recalled in Section 2.1.1.3, and we stick to the
notation used there.

Proposition 2.2.9. Let P be a Koszul operad with fixed presentation F (E ,R). Let

Γ=∑(
µ(1) ◦l µ

(2)) ·σ ∈ R(r )

be a quadratic relation of arity r , and denote the corresponding weight 2 element of the
Koszul dual cooperad P

¡ by Γc , so that

Γc := s2 (Γ) =
∑

(−1)|µ
(1)| (sµ(1) ◦l sµ(2)) ·σ.

Let A be a P -algebra, and let x1, ..., xr ∈ H∗(A) be homogeneous elements. Then the Γ-Massey
product set 〈x1, . . . , xr 〉Γ of Def. 2.1.4 and the Γc -Massey product set 〈x1, . . . , xr 〉Γc of Def. 2.2.7
are the same up to a sign,

〈x1, . . . , xr 〉Γ =±〈x1, . . . , xr 〉Γc .

In particular, the Massey product set 〈x1, . . . , xr 〉Γ is non-empty if , and only if, the Γc -Massey
product set 〈x1, . . . , xr 〉Γc is non-empty.

Proof. One can directly verify that

∆+ (
Γc)=∑

(−1)|µ
(1)|(sµ(1); id, . . . , id, sµ(2), id, . . . , id;σ).

Since µ(1) has weight 1, it follows that κ(sµ(1)) = µ(1). Therefore, a cycle representing the
Γc -Massey product associated to the elements x1, . . . xr is of the form∑

(−1)γµ(1) (aid,σ−1(1), . . . , aid,σ−1(l−1), asµ(2),σ−1(l ), aid,σ−1(l+r1), . . . , aid,σ−1(r )
)

,

as in Equation (2.6). Now, the aid,(i ) are just cycle representatives of the xi . To finish, we will
check that the element asµ(2),(l ) satisfies exactly Condition (2.4) in Muro’s construction (Def.

2.1.4), so it corresponds to the element ρ(2) there. Indeed, since sµ(2) has weight 1, it follows
that ∆+ (

sµ(2)
)= (

sµ(2); id, id. . . , ; id
)
, and so D

(
sµ(2)

)= (
µ(2); id, id. . . , ; id

)
. Therefore,

d asµ(2),(l ) =µ(2) (aid,l , . . . aid,l+r1−1
)

.

The sign (−1)γ that appears in Equation (2.6) gives exactly Muro’s sign plus one because for
binary operads, the weight equals the arity degree minus one. This completes the proof.

In the following examples, we explain how our operadic framework for defining systems
recovers the classical framework in the associative and Lie cases, and then explain how it
creates completely new higher-order operations.

93



Example 2.2.10. When P = Ass is the associative operad, our framework recovers the
classical definition of higher-order Massey products as in Def. 2.1.3. To see this, recall from
Example 2.2.4 that the weight n component of Ass

¡
is freely generated as an Sn+1-module

by a single generator µc
n+1, and that the µc

n-indexing set attached to a cooperation is given
by {(

µc
k , (i , i +1, . . . , i + i −1)

) | 1 ≤ k < n and i ∈ {1,2, . . . ,n −k +1}
}

.

We show next that fixing a particular differential graded associative algebra (A,d) and
homogeneous homology classes x1, ..., xn ∈ H∗(A), there is a bijective correspondence
between the classical defining systems {bi j } for the higher-order Massey product 〈x1, ..., xn〉,
and the defining systems {aα} for the µc

n-Massey product 〈x1, ..., xn〉µc
n

as defined in this
chapter. Indeed, the correspondence is given by

bi , j = aµc
j−i ,(i+1,i+2,...,i+( j−i )= j) for all 0 ≤ i < j ≤ n and 1 ≤ j − i ≤ n −1.

To finish, it suffices to compare the boundaries of the elements in these sets. Recall that

D
(
µc

r

)= ∑
l1+l2=r

(−1)l1+1
(
µ2;µc

l1
,µc

l2
; id

)
.

Therefore, by directly applying Definition 2.2.6, we see that

dbi j =
j−1∑

k=i+1
b̄i k bk j =

j−1∑
k=i+1

(−1)|bi k |+1bi k bk j =
j−1∑

k=i+1
(−1)|bi k |+1aµc

k−i ,(i+1,i+2,...,k) ·aµc
j−k ,(k+1,k+2,..., j )

=
j−1∑

k=i+1
(−1)

|aµc
k−i

,(i+1,i+2,...,k)|+1
aµc

k−i ,(i+1,i+2,...,k) ·aµc
j−k ,(k+1,k+2,..., j )

= ∑
l1+l2= j−i

(−1)l1+1(−1)γaµc
l1

,(k−l1+1,k−l2+2,...,k) ·aµc
l2

,(k+1,k+2,...,k+l2) = d aµc
j−i ,(i+1,i+2,...,i+( j−i )= j).

where γ= |xi+1|+ |xi+2|+ · · ·+ |xi+l1 | and the change of sign from the second to the third
line follows from the equality

|aµc
k−i ,(i+1,i+2,...,k)| = |xi+1|+ |xi+2|+ · · ·+ |xk |+ |µc

k−i |+1.

□
The observant reader will likely have spotted that the above is just one of the several

linearly independent Massey products that Ass possesses. In fact, there are different,
linearly independent Massey products for each permutation σ ∈ Sn , since µc

n ·σ is, for
σ ̸= id not a scalar multiple of µc

n . Up to a sign, these are related by 〈x1, . . . xn〉µc
n ·σ =〈

xσ−1(1), . . . xσ−1(n)
〉
µc

n
, see Prop. 2.2.21. Similarly, different presentations of an operad (in

the associative case, one could take for example the Livernet–Loday presentation [56, Prop.
9.1.1]) give rise to seemingly distinct Massey products, which are just the same expressed
with respect to a different basis.

Example 2.2.11. When P = Lie is the Lie operad, our framework recovers the classical
definition of higher Lie–Massey brackets as in [3, 77] (see also [4, 86]). To see this, recall
that the weight n part of Lie

¡
is one-dimensional and generated by τc

n+1 ∈ Lie
¡
(n +1). Recall

also from Example 2.2.5 that in this case, the τc
n-indexing set is

I
(
τc

n

)
:= {

(τc
k , (i1, . . . ik )) | k ≤ n and 1 ≤ i1 < ·· · < il < n

}
.
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We show next that fixed a particular differential graded Lie algebra (L,d) and homoge-
neous elements x1, ..., xn ∈ H∗(L), there is a bijective correspondence between the classical
defining systems {x j1,..., jl } of [3] for the higher-order Whitehead product [x1, ..., xn], and the
defining systems {aα} for the τc

n-Massey product as defined in this chapter. Indeed, the
correspondence is given by

x j1,..., jl = aτc
l ,( j1,..., jl ) for all 1 < j1 < ·· · < jl < n.

Recall from Example 2.2.5 that

D
(
τc

n

)= ∑
r1+r2=n

σ∈Sh
−1

(r1,r2)

(−1)r1+1 sgn(σ)
(
τ2;τc

r1
,τc

r2
;σ

)
.

Therefore, by directly applying Definition 2.2.6, we see that

d x j1,..., jl =
l∑

p=1

∑
σ∈Sh(p,l−p)

ϵ(σ)
[
x jσ(1),...,σ(p) , x jσ(p+1),...,σ(l )

]
= ∑

r1+r2=l

σ∈Sh
−1

(r1,r2)

(−1)r1+1 sgn(σ)τ2

(
a
τc

r1
,
(

jσ−1(1), jσ−1(2),..., jσ−1(r1)

), a
τc

r2
,
(

jσ−1(r1+1),..., jσ−1(l )

))

= d aτc
l ,( j1,..., jl ).

□
As likely expected, the higher-order Massey products for commutative differential

graded associative algebras coincide with those formed by forgetting that the structure
is commutative. This can be seen as a consequence of the theory developed in the next
section, see Example 2.2.25.

In [69], Muro contributed a new kind of triple Massey-product operation for Gersten-
haber and/or Poisson algebras. Our framework recovers this triple operation as a conse-
quence of Proposition 2.2.9. It follows from our results that all the higher-order analogs of
this new operation also exist. Although we will not give closed formulas, we hope these
higher products will be successfully applied in the future in cases where the triple-product
operation defined by Muro does not suffice.

Example 2.2.12. Recall that the Poisson operad Pois is self-Koszul dual, generated by a
commutative associative product ∧ and a Lie bracket [−,−], both of degree zero, which are
compatible via the Poisson relation,

[x ∧ y, z] = x ∧ [y, z]+ (−1)|y ||z|[x, z]∧ y.

The inner combinatorics of this operad are complex, and multiplying base elements fre-
quently involves complicated rewriting procedures. Therefore, we cannot hope to write
down formulas that are quite as clean as in examples 2.2.10 and 2.2.11. Nonetheless, it is
possible to compute Poisson Massey products inductively in low weight.

For example, if one considers [−,−] ∧− ∈ Pois
¡
(3), where we are taking the Koszul

suspensions to be implicit, one has

D ([−,−]∧−) = (∧; [−,−], id)− ([−,−]; id,∧, )− ([−,−]; id,∧, ) · (2,3).
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Recall thatκ[−,−] =∧ andκ(∧) = [−,−]. A defining system for the Massey product 〈x1, x2, x3〉
associated to the cooperation above in a Poisson algebra is therefore a set of elements{

z1, z2, z3, y1, y2, y3
}

where each zi is a cycle representative of xi for i = 1,2,3, and

d y1 = z1 ∧ z2, d y2 = [z2, z3] d y3 = [z1, z3].

The cycle representative associated to this defining system is

[y1, z3]− (−1)|z1|z1 ∧ y2 − (−1)|z2|+|z1||z2|z2 ∧ y3.

Similarly, if we consider [−,−∧−] ∈Pois¡
(3),

D ([−,−∧−]) = ([−,−]; id,∧)+ (∧; [−,−], id)+ (∧; id, [−,−]) · (1,2)

A defining system for the Massey product 〈x1, x2, x3〉 associated to this cooperation in a
Poisson algebra is therefore a set of elements

{
z1, z2, z3, y1, y2, y3

}
where each zi is a cycle

representative of xi for i = 1,2,3, and

d y1 = [z2, z3], d y2 = z1 ∧ z2 d y3 = z1 ∧ z3.

The cycle representative associated to this defining system is

z1 ∧ y1 − (−1)|z1|[y2, z3]− (−1)|z2|+|z1||z2|[z2, y3].

□
Example 2.2.13. We continue the previous example by computing the higher Massey
product corresponding to ∧◦ ([−,−], [−,−]) ∈Pois¡

(4). If one takes the Koszul suspensions
and Koszul signs to be implicit, one has:

△+ (∧◦ ([−,−], [−,−]))

= (∧; [−,−], [−,−])+ (∧◦ (−, [−,−]); [−,−], id, id)+ (∧◦ ([−,−],−); id, id, [−,−], )

+ (∧; id, [−,−∧−])+ (−∧ [−,−]; id, id,∧)+ (∧; [−,−∧−], id) · (2,4,3)

+ ([−,−]∧−; id,−∧−, id) · (2,4,3)+2(∧; id,−∧ [−,−], ) · (2,4,3)+2(−∧−∧−; id, id, [−,−]) · (2,4,3)

+2(∧;−∧−, [−,−]) · (2,4,3)+2(∧; id, [−,−]∧−)+2(−∧−∧−; id, [−,−], id)

+2(∧;−∧ [−,−], id)+2(∧; id, [−,−]∧−) · (1,2,4,3)+2(−∧−∧−; id, [−,−], id) · (1,2,4,3)

+2(∧;−∧ [−,−], id) · (1,2,4,3)+ (∧; id, [−∧−,−], id) · (1,2,3)+ (−∧ [−,−]; id,−∧−, id) · (1,2,3)

+ (∧; [−∧−,−], id)+ ([−,−]∧−;∧, id)

This means that

D (∧◦ ([−,−], [−,−]))

= (∧; [−,−], [−,−])+ (∧; id, [−,−∧−])+ (∧; [−,−∧−], id) · (2,4,3)+2(∧; id,−∧ [−,−], ) · (2,4,3)

+2(∧;−∧−, [−,−]) · (2,4,3)+2(∧; id, [−,−]∧−)+2(∧;−∧ [−,−], id)+2(∧; id, [−,−]∧−) · (1,2,4,3)

+2(∧;−∧ [−,−], id) · (1,2,4,3)+ (∧; id, [−∧−,−], id) · (1,2,3)+ (∧; [−∧−,−], id)

Now we compute the product corresponding to the equation above. This means that the
Massey product may be computed as being, up to Koszul sign

= [y∧,(1,2), y∧,(3,4)]+ [z1, xb,(2,3,4)]+ [xb,(1,3,4), z2]+2[z1, xa,(3,4,2)]

+2[y[−],(1,3), y∧,(4,2)]+2[z1, xa,(2,3,4)]+2[xa,(1,2,3), z4]+2[z3, xa,(1,4,2)]

+2[xa,(1,4,3), z2]+ [xb,(2,3,1), z4]+ [xb,(3,1,2), z4]

(2.7)
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where
d y∧,(i , j ) = zi ∧ z j , y[−],(i , j ) = [zi , z j ]

d xa,(i , j ,k) = [y∧,(i , j ), zk ]− (−1)|zi |z j ∧ y[−],( j ,k) − (−1)|z j |+|zi ||z j |z j ∧ y[−],(i ,k)

d xb,(i , j ,k) = zi ∧ y[−],( j ,k) − (−1)|zi |[y∧,(i , j ), zk ]− (−1)|z j |+|zi ||zk |[z j , y∧,(i ,k)]

□
The signs missing in each term of (2.7) can be computed as follows. These signs arise in

three ways:

• Firstly, the products in ∆+ come with the usual Koszul signs.

• Secondly, one has those signs corresponding to γ in Equation (2.6).

• Thirdly, to simplify the expression, for the three terms on the final line, we use the
(anti)commutativity of the generating cooperations. This introduces signs coming
from the (signed) identities

[x, y] =−(−1)|x||y |[y, x] and x ∧ y = (−1)|x||y |y ∧x.

Our final example will illustrate the close connection of Massey products with spectral
sequences. We point the reader to [56, 10.3.7] for some of the basic background on this
example.

Definition 2.2.14. The dual numbers operad is the quadratic operad D presented as

D :=F (k△,△◦△) ,

where △ is an arity 1 element of homological degree 1.

Algebras over this operad are precisely the bicomplexes, i.e., chain complexes (A,d)
equipped with an operation △ : A → A such that △2 = 0 and d△+△d = 0. The dual
numbers operad is Koszul, and its Koszul dual cooperad is cofree conilpotent on a single
generator,

D
¡ =F c (s△) .

In particular, this cooperad has no corelations and is concentrated in degree 1.

Example 2.2.15. We shall compute the Massey products of the dual numbers operad. The
arity 1 component of D

¡ is
D

¡
(1) =⊕

kδn ,

where δn has weight n and degree 2n. Since

∆+ (δn) =
∑

k+l=n
(δk ;δl ) ,

where l ≥ 1 and k ≥ 0, it follows that

D(δn) = (△;δn−1) for all n ≥ 2.

Therefore, the δn-indexing system is given by
{

aδi : 0 < i < n
}

, with the relation d aδi =
△(

aδi−1

)
. This is almost the definition of the dn−1-differential in the spectral sequence

associated to the bicomplex (A,d ,△). More precisely, one can check that if x ∈ 〈y〉δn is
defined in H∗(A), then y survives to the En−1-page of the associated spectral sequence and
dn−1(y) = [x]. □
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Remark 2.2.16. In our higher-order Massey products framework for Koszul operads, there
is nothing special about the Koszul dual cooperad P

¡ aside from it being a very useful
resolution. In principle, starting with any conilpotent cooperad C together with a choice
of twisting morphism τ : C →P , it is possible to define a relative Massey inductive map

D : C
∆+
−−→C ◦C

τ◦id−−−→P ◦C .

From this, one defines relative Massey products following, mutatis mutandis, the same
recipe we gave in the Koszul case. Taking C = BP to be the bar construction of P and
τ : BP →P the canonical twisting morphism, this allows for defining Massey products for
non-Koszul operads.

2.2.1 Elementary properties of the operadic Massey products

In this section, we collect some elementary properties of the operadic Massey products.
First, we show that Massey product sets do not depend on the initial choice of cycles
in the defining system (Prop. 2.2.17). Then, that morphisms of P -algebras preserve
Massey products (Prop. 2.2.18). In particular, quasi-isomorphisms induce bijections of the
corresponding Massey product sets. This provides an obstruction for two P -algebras to be
weakly equivalent. In particular, a nontrivial Massey product provides an obstruction to
formality. At the end of the section, we collect a few elementary properties of the Massey
products that might be useful elsewhere (Prop. 2.2.21).

For the next few results, we fix a cooperation Γc ∈ (
P

¡)(n)
(k). We say that a Massey

product set 〈x1, ..., xk〉Γc is defined if it is non-empty, that is, if there is some defining system
for the Massey product; trivial if it contains the zero homology class; and non-trivial if it is
defined and does not contain the zero homology class.

First, we shall show that Massey product sets do not depend on the initial choice of
cycles in the defining system.

Proposition 2.2.17. Let A be a P -algebra. Suppose that x1, ..., xk ∈ H∗(A) are homogeneous
elements such that the Massey product set 〈x1, ..., xk〉Γc is defined. For each x ∈ 〈x1, ..., xk〉Γc

and each choice of cycle representative xi for xi , one has a defining system
{

aβ
}

for x such
that aid,(i ) = xi

Proof. Let
{
bβ

}
be a defining system for a Massey product x ∈ 〈x1, ..., xk〉Γc . We shall con-

struct, by induction on the weight of the elements of the defining system, a defining
system

{
aβ

}
for a Massey product x ∈ 〈x1, ..., xk〉Γc such that aid,(i ) = xi and that aΓc ,(1,...,k) is

homologous to bΓc ,(1,...,k).
For the first step, simply fix aid,(i ) = xi . Since aid,(i ) and bid,(i ) are both choices of

representative for xi , it follows that aid,(i ) −bid,(i ) is nullhomologous, which means that
there is a cid,(i ) ∈ A such that

dcid,(i ) = aid,(i ) −bid,(i ).

The family
{

aid,(i )
}

gives the first inductive step. Now, suppose that for all indexes
(
µ, (i1, . . . , ik )

) ∈
I (Γc ) with the weight of µ strictly less than N , with 1 < N < n, where n is the weight of Γc ,
we have constructed aµ,(i1,...,ik ),cµ,(i1,...,ik ) ∈ A such that

d
(
aµ,(i1,··· ,ik )

)=∑
ζ

(
a
ζ1,

(
iσ−1(1),...iσ−1(v1)

), . . . , a
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

)) ,
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where D
(
µ
)=∑

(ζ;ζ1, . . . ,ζm ;σ), and

dcµ,(i1,...,ik ) = aµ,(i1,...,ik ) −bµ,(i1,...,ik ) +Qµ,(i1,...,ik ),

where Qµ,(i1,...,ik ) is the sum:

∑∑
ζ

(
x
ζ1,

(
iσ−1(1),...iσ−1(v1)

), . . . , x
ζ j ,

(
i
σ−1(v1+···+v j−1+1),...,i

σ−1(v1+···+v j−1+v j )

) . . . , x
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

)) .

Here, the outer summation is indexed by

D
(
µ
)=∑

(ζ;ζ1, . . . ,ζm ;σ) ,

and for each term (ζ;ζ1, . . . ,ζm ;σ), the inner sum is taken over every possible choice of
tuple(

x
ζ1,

(
iσ−1(1),...,iσ−1(v1)

), . . . , x
ζ j ,

(
i
σ−1(v1+···+v j−1+1),...,i

σ−1(v1+···+v j−1+v j )

) . . . , x
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

)) ,

where one of the
x
ζ j ,

(
i
σ−1(v1+···+v j−1+1),...,i

σ−1(v1+···+v j−1+v j )

)
is precisely

c
ζ j ,

(
i
σ−1(v1+···+v j−1+1),...,i

σ−1(v1+···+v j−1+v j )

),

anything to the left of it in the tuple is

a
ζ j ,

(
i
σ−1(v1+···+v j−1+1),...,i

σ−1(v1+···+v j−1+v j )

),

and anything to its right is

b
ζ j ,

(
i
σ−1(v1+···+v j−1+1),...,i

σ−1(v1+···+v j−1+v j )

).

Now, let
(
µ, (i1, . . . , ik )

) ∈ I (Γc ) have µ of weight N . Then, Qµ,(i1,...,ik ) is well defined, be-
cause the cooperations appearing in its defining tuple have weight strictly less than µ. Its
boundary is as follows:

dQµ,(i1,...,ik ) = dbµ,(i1,...,ik ) +
∑
ζ

(
aζ1,(iσ−1(1)),...iσ−1(v1)

, . . . , a
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

)) . (2.8)

Indeed, the sum dQµ,(i1,...,ik ) can be separated into two parts: a telescoping part that
converges to the right-hand side of the equation above, and a second part that can be
divided into subsums each vanishing by arguments similar to the proof of Theorem 2.2.8.
Now, from Equation (2.8), we deduce that the element∑

ζ

(
a
ζ1,

(
iσ−1(1),...iσ−1(v1)

), . . . , a
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

))
where the sum ranges over D

(
µ
) = ∑

(ζ;ζ1, . . . ,ζm ;σ), is a cycle. Therefore, there is an
element a′

µ,(i1,...,ik ) ∈ A such that

d a′
µ,(i1,...,ik ) =

∑
ζ

(
a
ζ1,

(
iσ−1(1),...iσ−1(v1)

), . . . , a
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

)) .
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Define a cycle
eµ,(i1,...,ik ) = a′

µ,(i1,...,ik ) −bµ,(i1,...,ik ) +Qµ,(i1,...,ik ).

Then there is an element e ′
µ,(i1,...,ik ) ∈ A such that e ′

µ,(i1,...,ik ) is homologous to eµ,(i1,...,ik ), that
is, such that

dcµ,(i1,...,ik ) = e ′µ,(i1,...,ik ) −eµ,(i1,...,ik ),

and
aµ,(i1,...,ik ) = a′

µ,(i1,...,ik ) −e ′µ,(i1,...,ik ).

It follows that

d
(
aµ,(i1,··· ,ik )

)=∑
ζ

(
a
ζ1,

(
iσ−1(1),...iσ−1(v1)

), . . . , a
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

)) ,

where the sum ranges over D
(
µ
)=∑

(ζ;ζ1, . . . ,ζm ;σ), and furthermore, that

dcµ,(i1,...,ik ) = aµ,(i1,...,ik ) −bµ,(i1,...,ik ) +Qµ,(i1,...,ik ).

This concludes the induction step. To finish, consider the element QΓc ,(i1,...,ik ). This is
defined by the same logic as above, and its boundary satisfies

dQΓc ,(i1,...,ik ) = aΓc ,(i1,...,ik ) −bΓc ,(i1,...,ik ).

Therefore, the elements aΓc ,(i1,...,ik ) and bΓc ,(i1,...,ik ) are homologous, as we wanted to prove.

Proposition 2.2.18. A morphism of P -algebras f : A → B preserves Massey products. That is,
if x1, ..., xk ∈ H∗(A) are homogeneous elements such that the Massey product set 〈x1, ..., xk〉Γc

is defined, then
〈

f∗ (x1) , ..., f∗ (xk )
〉
Γc is also defined, and moreover

f∗〈x1, ..., xk〉Γc ⊆ 〈
f∗ (x1) , ..., f∗ (xk )

〉
Γc .

If furthermore f is a quasi-isomorphism, then f∗ induces a bijection between the correspond-
ing Massey product sets.

Proof. Assume that the Massey product set 〈x1, ..., xk〉Γc is defined. Then, any defining
system {aα} for 〈x1, ..., xk〉Γc produces a defining system

{
f (aα)

}
for

〈
f∗ (x1) , ..., f∗ (xk )

〉
Γc ,

because f commutes with the operadic structure maps and the differentials. Therefore,
if 〈x1, ..., xk〉Γc is defined, then

〈
f∗ (x1) , ..., f∗ (xk )

〉
Γc is also defined, and the containment

f∗〈x1, ..., xk〉Γc ⊆ 〈
f∗ (x1) , ..., f∗ (xk )

〉
Γc follows.

Next, assume that f is a quasi-isomorphism and let us prove that the corresponding
Massey product sets are in bijective correspondence. Let

{
bβ

}
be a defining system for a

Massey product y ∈ 〈
f∗ (x1) , ..., f∗ (xk )

〉
Γc . We shall construct, by induction on the weight

of the elements of the defining system, a defining system
{

aβ
}

for a Massey product x ∈
〈x1, ..., xk〉Γc such that f

(
aΓc ,(1,...,k)

)
is homologous to bΓc ,(1,...,k), and therefore f∗(x) = y.

Let aid,(i ) be any representative for xi . This means that f (aid,(i ))−bid,(i ) is nullhomolo-
gous, which means that there is a cid,(i ) ∈ B such that

dcid,(i ) = f
(
aid,(i )

)−bid,(i ).

The family
{

aid,(i )
}

gives the first inductive step. Now, suppose that for all indexes
(
µ, (i1, . . . , ik )

) ∈
I (Γc ) with the weight of µ strictly less than N , with 1 < N < n, where n is the weight of Γc ,
we have constructed aµ,(i1,...,ik ) ∈ A and cµ,(i1,...,ik ) ∈ B such that

d
(
aµ,(i1,··· ,ik )

)=∑
ζ

(
a
ζ1,

(
iσ−1(1),...iσ−1(v1)

), . . . , a
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

)) ,
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where D
(
µ
)=∑

(ζ;ζ1, . . . ,ζm ;σ), and

dcµ,(i1,...,ik ) = f
(
aµ,(i1,...,ik )

)−bµ,(i1,...,ik ) +Qµ,(i1,...,ik ),

where Qµ,(i1,...,ik ) is the sum:

∑∑
ζ

(
x
ζ1,

(
iσ−1(1),...iσ−1(v1)

), . . . , x
ζ j ,

(
i
σ−1(v1+···+v j−1+1),...,i

σ−1(v1+···+v j−1+v j )

) . . . , x
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

)) .

Here, the outer summation is indexed by

D
(
µ
)=∑

(ζ;ζ1, . . . ,ζm ;σ) ,

and for each term (ζ;ζ1, . . . ,ζm ;σ), the inner sum is taken over every possible choice of
tuple(

x
ζ1,

(
iσ−1(1),...,iσ−1(v1)

), . . . , x
ζ j ,

(
i
σ−1(v1+···+v j−1+1),...,i

σ−1(v1+···+v j−1+v j )

) . . . , x
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

)) ,

where one of the
x
ζ j ,

(
i
σ−1(v1+···+v j−1+1),...,i

σ−1(v1+···+v j−1+v j )

)
is precisely

c
ζ j ,

(
i
σ−1(v1+···+v j−1+1),...,i

σ−1(v1+···+v j−1+v j )

),

anything to the left of it in the tuple is

f

(
a
ζ j ,

(
i
σ−1(v1+···+v j−1+1),...,i

σ−1(v1+···+v j−1+v j )

)) ,

and anything to its right is

b
ζ j ,

(
i
σ−1(v1+···+v j−1+1),...,i

σ−1(v1+···+v j−1+v j )

).

Now, let
(
µ, (i1, . . . , ik )

) ∈ I (Γc ) have µ of weight N . Then, Qµ,(i1,...,ik ) is well defined, be-
cause the cooperations appearing in its defining tuple have weight strictly less than µ. Its
boundary is as follows:

dQµ,(i1,...,ik ) = dbµ,(i1,...,ik ) +
∑
ζ

(
f (aζ1,(iσ−1(1)),...iσ−1(v1)), . . . , f (a

ζm ,
(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

))

)
.

(2.9)

Indeed, the sum dQµ,(i1,...,ik ) can be separated into two parts: a telescoping part that
converges to the right-hand side of the equation above, and a second part that can be
divided into subsums each vanishing by arguments similar to the proof of Theorem 2.2.8.
Now, from Equation (2.9), we deduce that the element

∑
ζ

(
a
ζ1,

(
iσ−1(1),...iσ−1(v1)

), . . . , a
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

))
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where the sum ranges over D
(
µ
) = ∑

(ζ;ζ1, . . . ,ζm ;σ), is a cycle. Therefore, there is an
element a′

µ,(i1,...,ik ) ∈ A such that

d a′
µ,(i1,...,ik ) =

∑
ζ

(
a
ζ1,

(
iσ−1(1),...iσ−1(v1)

), . . . , a
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

)) .

Define a cycle

eµ,(i1,...,ik ) = f
(
a′
µ,(i1,...,ik )

)
−bµ,(i1,...,ik ) +Qµ,(i1,...,ik ).

Then there is an element e ′
µ,(i1,...,ik ) ∈ A such that f

(
e ′
µ,(i1,...,ik )

)
is homologous to eµ,(i1,...,ik ),

that is, such that
dcµ,(i1,...,ik ) = f

(
e ′µ,(i1,...,ik )

)
−eµ,(i1,...,ik ),

and
aµ,(i1,...,ik ) = a′

µ,(i1,...,ik ) −e ′µ,(i1,...,ik ).

It follows that

d
(
aµ,(i1,··· ,ik )

)=∑
ζ

(
a
ζ1,

(
iσ−1(1),...iσ−1(v1)

), . . . , a
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(k)

)) ,

where the sum ranges over D
(
µ
)=∑

(ζ;ζ1, . . . ,ζm ;σ), and furthermore, that

dcµ,(i1,...,ik ) = f
(
aµ,(i1,...,ik )

)−bµ,(i1,...,ik ) +Qµ,(i1,...,ik ).

This concludes the induction step. To finish, consider the element QΓc ,(i1,...,ik ). This is
defined by the same logic as above, and its boundary satisfies

dQΓc ,(i1,...,ik ) = f
(
aΓc ,(i1,...,ik )

)−bΓc ,(i1,...,ik ).

Therefore, the elements f
(
aΓc ,(i1,...,ik )

)
and bΓc ,(i1,...,ik ) are homologous, as we wanted to

prove.

Recall that two P -algebras are weakly-equivalent, or quasi-isomorphic, if there is a
zig-zag of P -algebra quasi-isomorphisms between them. From the two previous results,
we can deduce the following.

Corollary 2.2.19. There is a bijection between the Massey product sets of weakly-equivalent
P -algebras.

Proof. Suppose one has a zig-zag of quasi-isomorphisms of P -algebras

A B C .
f g

By Proposition 2.2.18, there is a bijection between a Massey product set 〈x1, ..., xk〉Γc in A
and the corresponding Massey product set

〈
f∗ (x1) , ..., f∗ (xk )

〉
Γc at B . Since g is a quasi-

isomorphism, there exists yi such that g∗(yi ) = f∗(xi ). Therefore, a second application of
Proposition 2.2.18 yields that the Massey product set

〈
f∗

(
y1

)
, ..., f∗

(
yk

)〉
Γc is in bijection

with 〈x1, ..., xk〉Γc .

Recall that, for an operad P without differential, the homology of a P -algebra is also
a P -algebra. We say that a P -algebra is formal if it is weakly equivalent to its homology
endowed with the induced P -algebra structure (and trivial differential). In general, the
Massey products of P -algebras with trivial differential are always trivial because they have
no relations that exist at the chain level but not at the homological level. In particular, the
Massey products of the homology of a P -algebra are all trivial whenever they are defined.
From this, we immediately deduce the following result.
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Corollary 2.2.20. If a P -algebra has a nontrivial Massey product, then it is not formal.

Proof. Assume that a P -algebra A has a nontrivial Massey product. Since the homology of
A has a zero differential, it must be that all of its Massey products are trivial. Therefore, by
Corollary 2.2.19 it cannot be quasi-isomorphic to A.

Next, we collect some elementary properties satisfied by the operadic Massey products.
These are similar to some of those explained in [53] and, more recently, in [76, p. 325]. The
proofs follow from the definitions, and are left to the reader.

Proposition 2.2.21. Let A be a P -algebra, Γc ∈ (
P

¡)(n)
(r ), and x1, . . . , xr ∈ H∗(A) be homo-

geneous elements such that 〈x1, ..., xr 〉Γc is defined. Then the following assertions hold.

1. (Homological linearity) If k ∈ k is a scalar, then for all 1 ≤ i ≤ r ,

k〈x1, . . . , xr 〉Γc ⊆ 〈x1, . . . ,kxi , . . . , xr 〉Γc .

2. (Equivariance) For every permutation σ ∈Sr , there is a bijection

〈x1, . . . , xr 〉Γc
n ·σ = (−1)ε(σ−1)〈xσ−1(1), . . . xσ−1(r )〉Γc

n
,

where (−1)ε(σ−1) is the Koszul sign appearing by permuting the variables according to
σ−1.

Proof. 1. Let {aα} be a defining system for a Massey product x ∈ 〈x1, . . . , xr 〉Γc . Consider
a new defining system

b(ζ, j1,... js ) =
{

ka(ζ, j1,... js ) if jl = i for some l .

a(ζ, j1,... js ) otherwise.

In particular, one has

b(id, j ) =
{

ka(id,i ) for i = j .

a(id, j ) otherwise.

so {bα} is a defining system for a Massey product in 〈x1, . . . ,kxi , . . . , xr 〉Γc . Furthermore,
b(Γc ,1,2,...,r ) = ka(Γc ,1,2,...,r ) so the corresponding Massey product is kx.

2. Let {aα} be a defining system for a Massey product x ∈ 〈x1, . . . , xr 〉Γc . Consider a new
defining system

b(ζ, j1,... js ) := a(ζ,σ−1( j1),...σ−1( js ).

This is then a defining system for (−1)ε(σ−1)〈xσ−1(1), . . . xσ−1(r )〉Γc
n

and the result follows.

2.2.2 Massey products along morphisms of operads and formality

In this section, we shall discuss pullbacks and pushforwards of Massey products along
morphisms of operads and give some applications to formality.

Before we begin, it will be helpful to remark some observations. Let f : P → Q be a
morphism of weighted operads. In this case, taking Koszul dual cooperad is functorial, and
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therefore there is an induced map f ¡ : F (E ,R) = P
¡ → Q

¡ = F (F,S). Moreover, there is a
commutative diagram

P
¡

P
¡ ◦P

¡
P ◦P

¡

Q
¡

Q
¡ ◦Q

¡
Q ◦Q

¡

∆+

f ¡ f ¡◦ f ¡

κ◦id

f ◦ f ¡

∆+ κ′◦id

From this, we conclude that the Massey inductive map D commutes with f ¡. Secondly,
because the category of graded vector spaces admits finite colimits, on the level of algebras,
f descends to an adjoint pair

f! : P −Alg⇆Q−Alg : f ∗.

The functor f ∗ preserves the underlying chain complex of the Q-algebras, and therefore
there is a chain map f ∗(A) → A which is just the identity morphism. We define next
another chain map h : A → f!(A). Given a P -algebra A, the unit of the adjunction above is
a morphism of P -algebras

A → f ∗ f!(A).

Forgetting the P -algebra structure and recalling that f ∗ preserves the underlying chain
complex, there is a chain map

h : A → f!(A).

Pullbacks of Massey products. For any Q-algebra B , the P -Massey products on f ∗(B)
induce Q-Massey products on B . Since the underlying chain complex of both algebras is
the same, we can prove the following result.

Proposition 2.2.22. Let f : P →Q be a morphism of weighted operads, B a Q-algebra, and

Γc ∈ (
P

¡)(n)
(r ). Suppose that x1, ..., xr ∈ H∗

(
f ∗ (B)

)
are homogeneous elements such that

the Massey product set 〈x1, ..., xr 〉Γc is defined. If P is finite type arity-wise and f ¡(Γc ) ̸= 0,
then under the identification of f ∗(B) and B as chain complexes, we have

〈x1, ..., xr 〉Γc ⊆ 〈x1, ..., xr 〉 f ¡(Γc ).

If f ¡ is injective, this is an equality.

Proof. Let x ∈ 〈x1, ..., xr 〉Γc have a defining system
{
bµ,(i1,...,ir )

}
. We shall prove the statement

by constructing a defining system for x as a f ¡(Γc )-Massey product. If f ¡ is injective, then
the statement is trivial. Indeed, since D commutes with f ¡, we may obtain the desired

defining set
{

b f ¡(µ),(i1,...,ir ))

}
by setting b f ¡(µ),(i1,...,ir )) := bµ,(i1,...,ir )). The converse is also true;

each defining set
{

b f ¡(µ),(i1,...,ir ))

}
is a defining set for a Γc -Massey product.

If f ¡ is not injective, then the set before may fail to be a defining system. Two problems
may arise. Firstly, f ¡(µ) may be zero. In this case, however, any term coming from D in
which f ¡(µ) plays a role will also vanish, so we may safely remove any term of the form
b f ¡(µ),(i1,...,ir )) from the defining system altogether. Secondly, f ¡ may fail to preserve linear
independence. We circumvent this problem as follows. To fix notation, write P =F (E ,R)
and Q =F (F,S). The map f ¡ is a map of weighted quadratic cooperads and, in particular,

it sends cogenerators to cogenerators,
(

f ¡)(1)
: E → F . We shall assume that k-linear bases

of E and F are chosen such that the image of the basis elements of E are precisely the
first m basis vectors {ui } of F , and further that the other basis elements of F are not in the
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image of
(

f ¡)(1)
, and that the rest of the elements of the basis of E are in the kernel of

(
f ¡)(1)

.
These bases now, as explained in the second paragraph of Section 2.2, extend to bases of
the operads P and Q using appropriate symmetric tree monomials.

The image of f ¡ now entirely lies in the span of tree monomials labeled by the first
m basis elements of F . This means that there is now a canonical (with respect to this
choice of basis) linear section s of f ¡ defined only on this codomain that preserves the
cocomposition. This section is given by sending sums of tree monomials labeled by the
first m basis elements of F to sums of tree monomials of the same shape labeled by the
corresponding first m basis elements of E .

The section s induces a bijection between the indexing sets I
(

f ¡(Γc ), (1, ...,r )
)

and
I (Γc , (1, ...,r )). Define bµ,(i1,...in ) to be bs(µ),(i1,...in ). This provides a defining system for x.

Remark 2.2.23. This means that if f ¡ is injective and f ∗(B) has nontrivial Massey products,
then so does B .

Example 2.2.24. Consider the natural weighted operad morphism f : Lie→Ass. For any
differential graded associative algebra A, the differential graded Lie algebra f ∗(A) is the
chain complex A equipped with the bracket [a,b] = ab − (−1)|a||b|ba for all homogeneous
a,b ∈ A. Now, recall from Example 2.2.11 that Lie

¡
(n)(n−1) is generated by an element

denoted τc
n . Since on the level of Koszul dual cooperads, the map f ¡ : Lie

¡ →Ass
¡
is the linear

dual of the canonical operad map Ass→ Com, one can verify that f ¡(τc
n) = ∑

σ∈Sn
µc

n ·σ,

where µc
n is the generator of

(
Ass

¡)(n−1)
(n) as an Sn-module. This map is injective and

therefore, it follows from Proposition 2.2.22 that

〈x1, ..., xn〉τc
n
= 〈x1, ..., xn〉∑σ∈Sn µ

c
n ·σ.

This can be used in two ways. Firstly, we can deduce that if f ∗(A) admits a nontrivial
Lie–Massey bracket, then A admits a (nonclassical) associative bracket and so is not formal.
In general, on the other hand, most of the time if A has a nontrivial (classical) Massey
product, we cannot deduce the existence of a Massey product on f ∗(A) or its formality.
However, if A admits a Massey product of the form 〈x, x, ..., x〉µc

n
, referred to in the literature

as Kraine’s 〈x〉n product, or iterated Massey product, then it follows that it admits a product
of the form 〈x, ..., x〉∑

σ∈Sn µ
c
n ·σ, and so we can deduce that f ∗(A) is not formal. □

Example 2.2.25. We can use Prop 2.2.22 to compute the Massey products for the com-
mutative operad Com. Consider the canonical weighted operad map f : Ass→ Com. As
mentioned in the example before, the map f ¡ :Ass

¡ →Com
¡

is the linear dual of the natural
operad morphism g : Lie→Ass. This last operad map is an embedding, so it follows that f ¡

is surjective. Thus, for any τ ∈ (
Com

¡)(n)
(r ) there exists µ ∈ (

Ass
¡)(n)

(r ) such that f ¡(µ) = τ,
and it follows from Proposition 2.2.22 that

〈x1, ..., xk〉τ ⊆ 〈x1, ..., xk〉µ,

whenever the products above make sense. □

Pushforwards of Massey products. For any P -algebra A, the P -Massey products on A
induce Q-Massey products on f!(A).

Proposition 2.2.26. Let f : P → Q be a morphism of weighted operads, A a P -algebra,

and Γc ∈ (
P

¡)(n)
(r ). Suppose that x1, ..., xr ∈ H∗(A) are homogeneous elements such that the

Massey product set 〈x1, ..., xr 〉Γc is defined. Then, the Q-Massey product set 〈h∗(x1), ...,h∗(xr )〉 f ¡(Γc )

is also defined, and
h∗〈x1, ..., xr 〉Γc ⊆ 〈h∗(x1), ...,h∗(xr )〉 f ¡(Γc ).
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Proof. One constructs a defining system for a f ¡(Γc )-Massey product in essentially the
same manner as in the proof of Proposition 2.2.22.

Let x ∈ 〈x1, ..., xr 〉Γc have a defining system
{
bµ,(i1,...,ir )

}
. We shall prove the statement

by constructing a defining system for x as a f ¡(Γc )-Massey product. If f ¡ is injective, then
the statement is trivial. Indeed, since D commutes with f ¡, we may obtain the desired

defining set
{

b f ¡(µ),(i1,...,ir ))

}
by setting b f ¡(µ),(i1,...,ir )) := h

(
bµ,(i1,...,ir ))

)
. If f ¡ is not injective,

then the set before may fail to be a defining system. Two problems may arise. Firstly,
f ¡(µ) may be zero. In this case, however, any term coming from D in which f ¡(µ) plays a
role will also vanish, so we may safely remove any term of the form b f ¡(µ),(i1,...,ir )) from the

defining system altogether. Secondly, f ¡ may fail to preserve linear independence. We fix
this problem as follows.

To fix notation, write P =F (E ,R) and Q =F (F,S). The map f ¡ is a map of weighted

quadratic cooperads and, in particular, it sends cogenerators to cogenerators,
(

f ¡)(1)
: E → F .

We shall assume that k-linear bases of E and F are chosen such that the image of the basis
elements of E are precisely the first m basis vectors {ui } of F , and further that the other

basis elements of F are not in the image of
(

f ¡)(1)
, and that the rest of the elements of the

basis of E are in the kernel of
(

f ¡)(1)
. These bases now, as explained in the second paragraph

of Section 2.2, extend to bases of the operads P and Q using appropriate symmetric tree
monomials.

The image of f ¡ now entirely lies in the span of tree monomials labeled by the first
m basis elements of F . This means that there is now a canonical (with respect to this
choice of basis) linear section s of f ¡ defined only on this codomain that preserves the
cocomposition. This section is given by sending sums of tree monomials labeled by the
first m basis elements of F to sums of tree monomials of the same shape labeled by the
corresponding first m basis elements of E .

The section s induces a bijection between the indexing sets I
(

f ¡(Γc ), (1, ...,r )
)

and
I (Γc , (1, ...,r )). Define bµ,(i1,...in ) to be

(
bs(µ),(i1,...in )

)
. This provides a defining system for

x.

Example 2.2.27. Consider the natural operad map f : Lie→Ass. For any differential graded
Lie algebra g, the differential graded associative algebra f!(g) is the universal enveloping
algebra of A. Recall that there is an embedding of graded vector spaces (in fact, graded Lie
algebras) h : g→ f!(g). Since on the level of Koszul dual cooperads, the map f ¡ : Lie

¡ →Ass
¡
is

the linear dual of the forgetful functor Ass→Com, one can verify that f ¡(τc
n) =∑

σ∈Sn
µc

n ·σ,

where µc
n is the generator of

(
Ass

¡)(n−1)
(n) as an S-module. Therefore,

h∗〈x1, ..., xk〉τc
n
⊆ 〈h∗(x1), ...,h∗(xk )〉∑

σ∈Sn µ
c
n ·σ.

□

A criterion for formality. In this section, we characterize the formality of a P -algebra in
terms of its Sullivan model, whenever it makes sense (Prop. 2.2.29 below). Although the
result is presumably well-known to experts, we could not find a precise statement in the
literature. The connection of the characterization with this chapter is that it gives us a
method to construct non-formal algebras with vanishing higher operadic Massey products
of all orders. We leave the task of finding explicit examples to the interested reader.

The Sullivan model of a P -algebra exists after imposing some connectivity assumptions
on the operad and the algebra itself. To our knowledge, the first work in this direction
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is [55], where P is assumed to be Koszul and concentrated in degree 0, while the most
general results are achieved in [20], were P is not required to be Koszul, but satisfy a mild
connectivity requirement called being tame. We stick to the setting of [20], but will also
require P to be Koszul to make use of infinity structures. An operad P is r -tame for a fixed
integer r ≥ 0 if for every n ≥ 2,

P (n)q = 0 for all q ≥ (n −1)(1+ r ).

The operads Ass,Com and Lie are examples of 0-tame operads, as well as their minimal
models. The Gerstenhaber operad Gerst is 1-tame. The main results of [20] combine to
read as follows.

Theorem 2.2.28. [20] Every r -connected algebra over an r -tame operad has a Sullivan
minimal model, unique to isomorphism.

Now, suppose that P is an r -tame Koszul operad and A is an r -connected finite type
algebra for some r ≥ 0. Furthermore, suppose that A is P∞-quasi-isomorphic to a minimal
P∞-algebra H with differential δ whose components δ(n) vanish for all n ≥ 2. Then there is
a quasi-isomorphism of P

¡-coalgebras

(P
¡
(A),δ)

≃−→ (P
¡
(H),δ′).

Taking the linear dual, one obtains a quasi-isomorphism of P !-algebras

(P !(H),d ′) ≃−→ (P !(A),d).

The differential d ′ is decomposable and concentrated in weight 2. Therefore, (P !(H),d)
is a minimal Sullivan model for (P !(A),d), which is the dual of the bar construction on A.
This model is unique up to isomorphism, as mentioned before. We sum this discussion up
in the following characterization.

Proposition 2.2.29. Let P be an r -tame Koszul operad for some r ≥ 0, and A an r -connected
finite type P -algebra. Then A is formal if, and only if, the Sullivan minimal model of the
dual of the bar construction on A admits a differential concentrated in weight 2.

2.3 Differentials in the P -Eilenberg–Moore spectral
sequence

Aside from providing obstructions to formality, one of the major uses of higher Massey
products is in providing a concrete description of the differentials in the classical Eilenberg–
Moore spectral sequence. The following is a classical result of May [63], compare also [82],
but adapted to the notation of this chapter.

Theorem 2.3.1. Let A be a differential graded associative algebra, and let x1, . . . xn be ho-
mology classes such that the Massey product set 〈x1, ..., xn〉 is non-empty. Then, the element
[sx1 | · · · | sxn] survives to the E n−1-page of the Eilenberg–Moore spectral sequence of A, and
furthermore, the suspension sx of any representative of x ∈ 〈x1, . . . xn〉 is a representative for
d n−1[sx1 | · · · | sxn].

An analogous statement for differential graded Lie algebras appears in [3]. Our following
result generalizes these statements to all algebras over a Koszul (in fact, quadratic) operad.
Recall from Section 2.1.1.1 the construction of the spectral sequence. We will sometimes
confuse homology classes with representatives to lighten the notation.
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Theorem 2.3.2. Let A be a P -algebra, and x1, . . . xr homology classes such that the Massey
product set 〈x1, ..., xr 〉Γc is defined for a cooperation Γc ∈P

¡(r )(n). Then the element

Γc ⊗x1 ⊗·· ·⊗xr ∈
(
P

¡
)(n)

(r )⊗H∗(A)⊗r

survives to the E n−1 page in the P -Eilenberg–Moore spectral sequence, and for x ∈ 〈x1, . . . xn〉

d n−1 (
Γc ⊗x1 ⊗·· ·⊗xr

) ∈ (−1)n−2 [id⊗x] .

Our proof of this is an adaption of the classical one, so we shall therefore make use of
the Staircase Lemma [53, Lemma 2.1], which we briefly recall next.

Lemma 2.3.3. Let A = (
A∗,∗,d ′,d ′′) be a bicomplex, denote by d the differential on its total

complex, and fix c1, . . . ,cn homogeneous elements in A. Suppose that d ′cs = d ′′cs+1 for 1 ≤
s ≤ n−1, and define c := c1−c2+·· ·+(−1)n−1cn . Then, dc = d ′c+d ′′c = d ′′c1+(−1)n−1d ′cn ,
and furthermore, in the spectral sequence

{
(E r ,d r )

}
associated to the bicomplex, if d ′′c1 = 0

then c1 survives to E n , and d n[c1] = (−1)n−1[d ′cn].

Our approach to proving Theorem 2.3.2 is therefore to construct a sequence c1, . . .cr−1

satisfying the conditions of the Staircase Lemma.

Proof of Theorem 2.3.2. First, fix a defining system
{

aµ,(k1,...,ki )
}

for the element x ∈ 〈x1, . . . , xr 〉Γc .
For each s between 1 and n −1, we will define cs in terms of this defining system and the
auxiliary maps

△s : P
¡ △−→P

¡ ◦P
¡ ps◦id−−−→

(
P

¡
)(s) ◦P

¡
,

where ps is the projection onto the weight s component. More precisely, the element cs is
defined as

cs :=∑[
ζ(n−s) ⊗aµ1,(σ−1(1),...σ−1(i1)) ⊗·· ·⊗aµm ,(σ−1(i1+···+im−1+1),...σ−1(r ))

]
,

where △n−s (Γc ) =∑(
ζ(s);µ1, . . . ,µm ;σ

)
. In particular, c1 = [Γc ⊗aid,(1) ⊗·· ·⊗aid,(r )], and

cn−1 =
∑(

sζ(1))⊗aµ1,(σ−1(1),...,σ−1(v1)) ⊗·· ·⊗aµm ,(σ−1(v1+···+vm−1+1),...,σ−1(r )),

where D (Γc ) =∑(
ζ(1);µ1, . . . ,µm ;σ

)
with ζ(1) ∈ E and thus sζ(1) ∈ sE ⊂ (

P
¡)(1)

. To finish, we
must verify that the conditions of the Staircase Lemma 2.3.3 are met. Denote by ∂ the
external differential on P

¡(A), and by d• its internal differential. Then, since d(aid,(i )) = 0
for each i , it follows that d•c1 = 0. A routine calculation shows that d•cs+1 = ∂cs for each s.
It follows from the Staircase Lemma that

dn−1[c1] = (−1)n[∂cn−1] = (−1)n[x].

In the expression of cn−1, the element ζ is in the image of the twisting morphism κ. In
particular, this implies that it is of weight 1, and so ∂cn−1 ∈ id⊗〈x1, . . . , xr 〉Γc . This finishes
the proof.

The formality of a dg algebra of some type is well-known to be related to the collapse
of the associated Eilenberg–Moore-type spectral sequence, see for instance [43] for the
commutative case, and [28] for the Lie case. The following statement generalizes these
results.

Theorem 2.3.4. The Eilenberg–Moore spectral sequence of a formal P -algebra over a Koszul
operad collapses at the E 2-page. The same is true for formal P∞-algebras.
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Proof. Since every P -algebra is a P∞-algebra, we prove the result for P∞-algebras. Let A
be a formal P∞-algebra, and denote by H = H∗(A) its homology as a P -algebra. Then there
are P∞-quasi-isomorphisms A ⇆ H , or equivalently, P

¡-coalgebra quasi-isomorphisms

P
¡
(A)⇆P

¡
(H).

Recall that the codifferential δH (µ,−) of P
¡(H) vanishes unless µ ∈ P

¡ has weight 1. By
comparison, both Eilenberg–Moore spectral sequences are isomorphic from the first page.
Therefore, it suffices to consider the case where A has no internal differential and δ(i )

A
vanishes when i ̸= 1. We now check that the differential d i in the Eilenberg–Moore spectral
sequence vanishes for i ≥ 2. To do so, we will use the standard relative cycles and boundaries
spaces,

Z r
p = FpP

¡
(A)∩δ−1

(
Fp−r P

¡
(A)

)
and Dr

p = FpP
¡
(A)∩δ

(
Fp+r P

¡
(A)

)
.

The differential d r in the successive pages of the spectral sequence is induced by the
restrictions of the differential δ of P

¡(A) to Z r
p , as shown below:

Z r
p Z r

p−r

E r
p = Z r

p /Z r−1
p−1 +Dr−1

p E k
p−r = Z r

p−r /Z r−1
p−r−1 +Dr−1

p−r

δ

d r

Fix some r ≥ n. To check that d r = 0, we will fix an element x ∈ Z r
p and find a representative

y of the class [x] ∈ E r
p such that

δ(y) ∈ Z r−1
p−r−1 +Dr−1

p−r = Fp−r−1P
¡
(A)∩δ−1

(
Fp−r−1P

¡
(A)

)
+Fp−r P

¡
(A)∩δ

(
Fp−1P

¡
(A)

)
.

Indeed, write x = x1 +·· ·+xp where each xi ∈P
¡(i )⊗ A⊗i . Now, since δ(x) ∈ Fp−r P

¡(A), it
follows that δ

(
xp−r+1 +·· ·+xp

)= 0. Thus, we take y = x − (
xp−r+1 +·· ·+xp

)
as a represen-

tative of the form we needed, finishing the proof.

The converse to Theorem 2.3.4 in general is not true, it fails even in the associative case
and some examples are computed in some of the references given before the statement of
the theorem.

Remark 2.3.5. Massey products sometimes completely determine formality. For the case
of the dual numbers operad, the Massey products are precisely the differentials in the
spectral sequence associated to the bicomplex. So if the differentials all vanish, the spectral
sequence must collapse on the E 2-page.

2.4 Higher-order operadic Massey products and P∞-
structures

In this section, we fix a Koszul operad P . In this case, there is a natural relationship between
the higher-order operadic Massey products and P∞-structures on the homology of the
P -algebras.
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Let A be a P -algebra, and denote by H its homology. Since P has no operadic differen-
tial, H is a P -algebra in a natural way. It is well-known that the homotopy transfer theorem
(in its various forms) extend this P -algebra structure on H to a P∞-structure that retains
the quasi-isomorphism class of A as a P∞-algebra. In this chapter, we mainly focus on D.
Petersen’s extension [72] of T. Kadeishvili’s classical transfer theorem [50], which is recalled
in Theorem 2.1.2. See also [56, Section 10.3]. It is a common misconception to expect that
higher-order Massey products sets of the sort 〈x1, ..., xr 〉 are related to P∞-structure maps
θr induced on the homology H via the homotopy transfer theorem by the clean formula

±θr (x1, ..., xr ) ∈ 〈x1, ..., xr 〉.

At this level of generality, the assertion is incorrect. However, it is true for secondary Massey
products, as shown in [69, Theorem 3.9].

Let us make the connection between infinity structures and higher-order Massey prod-
ucts more precise. First, recall that codifferentials on the cofree conilpotent P

¡-coalgebra
P

¡(A) are in bijective correspondence with P∞-structures on the chain complex A [56,
Theorem 10.1.13].

Definition 2.4.1. Let A be a P -algebra, Γc ∈ (
P

¡)(n)
(r ), and x1, ..., xr homogeneous ele-

ments of H = H∗(A) for which the Γc -Massey product set 〈x1, . . . , xr 〉Γc is defined. A given
P∞ structure δ on H for which A and H are quasi-isomorphic is said to recover the Massey
product element x ∈ 〈x1, . . . , xr 〉Γc if, up to sign,

δr
(
Γc ⊗x1 ⊗·· ·⊗xr

)= x.

We begin by showing below that given a higher-order Massey product x ∈ 〈x1, . . . , xr 〉Γc ,
there is always a choice of P∞ structure on H quasi-isomorphic to A which recovers x. In
general, however, an arbitrary P∞ structure on H quasi-isomorphic to A only recovers a
given higher-order Massey product element up to multiplications of lower arity. Our proof
strategy is very similar to the proof in [16], where the authors demonstrated this result in
the associative case. In the result below, we require the operad to be reduced for Theorem
2.1.2 to apply.

Theorem 2.4.2. Let A be an algebra over a reduced Koszul operad P , and let H be its

homology. Let Γc ∈ (
P

¡)(n)
(r ), and assume that x1, ..., xr are r ≥ 3 homogeneous elements of

H for which the Γc -Massey product set 〈x1, . . . xr 〉Γc is defined. Let x ∈ 〈x1, . . . xr 〉Γc . Then:

(i) For any P∞ structure δ on H quasi-isomorphic to A, we have

δ(n) (Γc ⊗x1 ⊗·· ·⊗xr
)= x +Φ,

where Φ ∈
n−1∑
i=1

Im
(
δ(i )

)
.

(ii) If µ⊗ xi1 ⊗·· ·⊗ xil are linearly independent in the corresponding copy of P
¡ ⊗Sl A⊗l ,

where (µ, (i1, ..., il )) ∈ I (Γc ), then there is a choice of P∞ structure δ on H which recovers
x.

Proof. (i ) We will construct a P∞ structure on H recovering x via the procedure established
in the proof of Theorem 2.1.2. We shall continue to use the notation of that proof. First,
we choose a defining system {aα} for the Massey product element x ∈ 〈x1, . . . , xr 〉Γc . We
proceed by induction on arity, starting in arity 1 with δ1 initially defined as the coderivation
corresponding to the strict P -algebra structure on H induced from it being the homology
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of A, and defining f as any chain quasi-isomorphism H → A extending the choice f (x1) =
aid,(1), f (x2) = aid,(2), . . . , f (xr ) = aid,(r ). This defines a map F1 : P ¡(1)⊗H → A, since P

¡(1) =
k. We give next the arity 2 step. This step is not needed for the inductive procedure, but
we include it because we think it sheds light on the general case. Recall that the algorithm
of Theorem 2.1.2 automatically determines the multiplication on H , but there are choices
for F2. First, we make the following observation. If

(
sµ, (i , j )

)
appears in the Γc -indexing

system, then γA(µ; xi , x j ) = 0. This is because D
(
sµ

)= (
µ, id, id

)
, and therefore

d asµ,(i , j ) = κ
(
sµ

)(
aid,(i ), aid,( j )

)
,

which implies that γA(µ; xi , x j ) ∈ H admits a lift to A which is a coboundary, which implies
that it is 0 on homology. It therefore follows that

(
F 1 ◦δ1

)
2 is 0 when applied to [sµ⊗xi ⊗x j ].

On the other hand,(
δ1 ◦F 1)

2 [sµ⊗xi ⊗x j ] = κ(
sµ

)(
F1 (xi ) ,F1

(
x j

))= d asµ,(i , j ).

So we choose F2 : P ¡(2)⊗H⊗2 → A to extend the choice F2
(
µ, xi , x j

)= aµ,(i , j ). The general
case is similar. Our inductive hypothesis has the following two parts:

Fl
[
µ⊗xi1 ⊗·· ·⊗xil

]= aµ,(i1,...,il ),where
(
µ, (i1, . . . il )

) ∈ I
(
Γc)and l < n, (2.10)

and
δk−1

l

[
µ⊗xi1 ⊗·· ·⊗xil

]= 0, where
(
µ, (i1, . . . il )

) ∈ I
(
Γc) for l ≤ n. (2.11)

We verified these two items in the arity 2 case in the previous paragraph. Next, we shall
compute (δA ◦F )n

[
µ⊗xi1 ⊗·· ·⊗xin

]
. The map (δA ◦F )n is precisely the composite

P
¡
(H)

∆(H)−−−→P
¡ ◦P

¡
(H)

P
¡( f )−−−−→P

¡
(A)

κ(A)−−−→P (A)
γA−→ A.

The arity n component of f is 0, and in particular P
¡ ( f

)(
id;µ⊗xi1 ⊗·· ·⊗xin

)= 0. It follows
that (δA ◦F )n sends the class of µ⊗xi1 ⊗·· ·⊗xin to the same element as the following map
does:

P
¡
(H)

∆+
−−→P

¡ ◦P
¡
(H)

P
¡( f )−−−−→P

¡
(A)

κ(A)−−−→P (A)
γA−→ A.

The map above is tightly related to the Massey inductive map D. Indeed, the image of
µ⊗xi1 ⊗·· ·⊗xin is given by∑

ζ
(

f
(
ζ1 ⊗xiσ−1(1)

⊗·· ·⊗xiσ−1(v1)

)
, . . . , f

(
ζm ⊗xiσ−1(v1+···+vm−1+1)

⊗·· ·⊗xiσ−1(n)

))
,

where
D

(
µ
)=∑

(ζ;ζ1, . . . ,ζm ;σ) .

By the first assumption of our inductive hypothesis (2.10), this is equal to∑
ζ

(
a
ζ1,

(
iσ−1(1),...iσ−1(v1)

), . . . , a
ζm ,

(
iσ−1(v1+···+vm−1+1),...,iσ−1(n)

)) .

It follows from the definition of a defining system that this is equal to

d aµ,(xi1 ,...,xin ).

The second assumption of our inductive hypothesis (2.11) implies that
(
F n−1 ◦δn−1

)
l

[
µ⊗xi1 ⊗·· ·⊗xil

]=
0, so we have that(

F ◦δn−1 −δA ◦F
)

n

[
µ⊗xi1 ⊗·· ·⊗xin

]=−d aµ,(xi1 ,...,xin ).
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Therefore, there is no obstruction to obtaining a lift Fn such that Fn(µ⊗ xi1 ⊗·· ·⊗ xin ) =
aµ,(xi1 ,...,xin ). Notice that the algorithm also tells us that δn

n

[
µ⊗xi1 ⊗·· ·⊗xin

]= 0 (the pro-
jection of a boundary in homology).

Next, we shall verify that δn
n+1

(
µ⊗xi1 ⊗·· ·⊗xin+1

) = 0 when (µ, (i1, . . . , in+1)) ∈ I (Γc ).
Because the arity (n +1)-component of δn comes from the P -algebra structure induced
on H from A, we have that

δn (
µ⊗xi1 ⊗·· ·⊗xin+1

)= γA
(
κ

(
µ
)

; xi1 , . . . , xin+1

)
.

But if κ
(
µ
)

is non-zero, then µ must be of weight 1. It then follows that D
(
µ
)= (µ; id, . . . , id).

So, by the same argument as in the arity 2 case, we conclude that γA
(
κ

(
µ
)

; xi1 , . . . , xin+1

)= 0.

(i i ) Consider any P∞ quasi-isomorphism H
≃−→ A and the corresponding quasi-isomorphism

of P
¡-coalgebras

P
¡
(H)

≃−→P
¡
(A).

The induced morphism of P -Eilenberg–Moore spectral sequences is, at the E1 level, the
identity on P

¡(H). By comparison, all the terms in both spectral sequences are also
isomorphic. Now, it follows from Theorem 2.3.2 that if 〈x1, . . . xr 〉Γc is nonempty, then the
element [Γc ⊗ x1 ⊗·· ·⊗ xr ] survives to the (n −1)-page (E n−1,d n−1). Moreover, given any
x ∈ 〈x1, . . . xr 〉Γc , one has

d n−1Γc ⊗x1 ⊗·· ·⊗xr = (−1)r x.

Here, · denotes the class in E n−1. In other words, there exists Φ ∈ Fn−1P
¡(H) such that

δH
(
Γc ⊗x1 ⊗·· ·⊗xr +Φ

)= x.

Applying the counit ϵH : P ¡(H) → H to both sides, we obtain

mH
(
Γc ⊗x1 ⊗·· ·⊗xr +Φ

)= x.

Write mH =∑
i≥2∂

(i )
H , and decompose Φ=∑r−1

i=2 φi with φi ∈P
¡(H)(i ). By a word length

argument,

δ(n)
H

(
Γc ⊗x1 ⊗·· ·⊗xr

)+ r−1∑
i=2

δ(i )
H (φi ) = x.

This completes the proof.
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CHAPTER 3

An obstruction theory for strictly commutative algebras in positive
characteristic

Abstract

This is the first in a sequence of chapters exploring the relationship between commutative
algebras and E∞-algebras in characteristic p and mixed characteristic. In this chapter we lay
the groundwork by defining a new class of cohomology operations over Fp called cotriple
products, generalising Massey products. We compute the secondary cohomology operations
for a strictly commutative dg-algebra and the obstruction theories these induce, constructing
several counterexamples to characteristic 0 behaviour, one of which answers a question
of Campos, Petersen, Robert-Nicoud and Wierstra. We construct some families of higher
cotriple products and comment on their behaviour. Finally, we distingush a subclass of
cotriple products that we call higher Steenrod operations and conclude with our main
theorem, which says that E∞-algebras can be rectified if and only if the higher Steenrod
operations vanish coherently.

3.1 Introduction

Since its introduction by Quillen [75] and Sullivan [84]; rational homotopy theory has proba-
bly become the single most successful subfield of algebraic topology. The latter approach
to the theory reduces the study of rational topological spaces to that of commutative dg-
algebras.

One of the central observations of [84] was that it was possible to replace the E∞-algebra
C •(X ,Q) with a strictly commutative model APL(X ). In positive characteristic, this is not
possible because the Steenrod operations act as obstructions, and, in particular, for spaces
we have that the zeroth Steenrod power operation P 0 never vanishes (see Proposition 3.5.1).
The main goal of this chapter is to investigate the precise relationship between strictly
commutative and E∞-algebras in positive characteristic.

It is here that we introduce the key idea of this chapter; that is, that rectifiablity in
characteristic p should be studied in a similar manner to formality in characteristic 0. In
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characteristic 0, Massey products provide higher obstructions to formality. Massey triple
products correspond to relations in the cohomology algebra and higher Massey products
correspond to syzygies between those relations. For an E∞-algebra to be rectifiable, its
Steenrod operations must vanish, but we also will need to impose conditions ensuring that
syzygies between them should vanish as well. This will be complicated by the fact that strictly
commutative dg-algebras do have one Steenrod operation - the Frobenius map - and some
higher cohomology operations coming from that.

It is worth noting that, despite not modelling spaces directly, commutative algebras retain
some significant advantages over E∞-algebras. The most significant of these is computa-
tional. Commutative algebras, due to the fact that they are generated by a single operation
with the simplest possible behaviour, of all the algebraic objects appearing in geometry
and topology, are the most amenable to computer algebra techniques. In contrast, E∞-
algebras are generated by infinitely many operations, are generally large, unwieldy, and very
few operations, with some notable exceptions [68], on them have been, or are likely to be,
automated.

We develop an obstruction theory, determined by cotriple products, a non-linear gener-
alisation of both Massey products and Steenrod operations, designed to handle the extra
invariants given by the Frobenius map. More precisely, these operations are defined to be
differentials in a spectral sequence associated to the operadic cotriple resolution. We show
that they also admit a description that is highly reminscent of defining systems for Massey
products, complete with well-defined indeterminacies. In many situations, they also possess
the main advantage of Massey products, the indeterminacy can be computed directly from
the product set without needing to compute the full spectral sequence (Proposition 3.3.10).

We then study cotriple resolutions in the context of the commutative operad in positive
characteristic. The main result is that the secondary cotriple products consist of traditional
Massey products along with two additional types of operation coming from the Frobenius
map. We compute the indeterminacy of these additional operations and use them to con-
struct examples of commutative dg-algebras that are formal overQ (Example 3.4.10) but not
over Fp , and algebras with a divided power structure on cohomology that are not weakly
equivalent to a divided powers algebra (Example 3.4.11).

In [17, Section 0.3], the authors pose the following question: If two commutative dg
algebras are quasi-isomorphic as associative dg algebras, must they be quasi-isomorphic also
as commutative dg algebras? They then settle the question in characteristic 0.

Theorem 3.1.1. [17, Theorem A] Let A and B be two commutative dg algebras over a field of
characteristic zero. Then, A and B are quasi-isomorphic as associative dg algebras if and only
if they are also quasi-isomorphic as commutative dg algebras.

It is perhaps unsurprising that cotriple products offer a useful perspective in characteristic
p. In particular, we are able to provide an explicit counterexample (Theorem 3.4.15) in
characteristic 2 which extends to a general method for constructing counterexamples in
characteristic p for odd primes.

We then turn to the study of higher order operations, this turns out to be much more
subtle than with Massey produts, as the existence of a higher homotopy invariant operation
does not necessarily follow automatically from the vanishing of a lower order one (Example
3.4.26). We define an infinite family of higher operations coming from the iterations of the
Frobenius map and compute their indeterminacy.
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Finally, we conclude with a necessary and sufficient condition for an E∞-algebra to be
quasi-isomorphic to a commutative algebra. We first define higher Steenrod operations as
subset of the cotriple operations. Then we have the following rectification result.

Theorem D. Let A be an E∞-algebra over Fp . Then A is rectifiable if and only if its higher
Steenrod operations vanish coherently.

The coherent vanishing condition, which is inspired by the following theorem of Deligne,
Griffiths, Morgan and Sullivan.

Theorem 3.1.2. [23] Let A be a commutative dg-algebra overQ. Let m= (Sym(
⊕∞

i=0 Vi ),d) be
the minimal model for A. Then A is formal if and only if, there is in each Vi a complement Bi

to the cocycles Zi , Vi = Zi ⊕Bi , such that any closed form, a, in the ideal, I ((
⊕∞

i=0 Bi ), is exact.

One can also ask whether the homotopy type of a commutative dg-algebra coincides with
its homotopy type as an E∞-algebra. While this is true in characteristic 0, we believe that in
positive characteristic the answer is no. This can be shown with the aid of third order cotriple
products, and we intend to return to it in separate work.

Structure of the chapter

First we recall some preliminaries on commutative dg-algebras, E∞-algebras and Steenrod
operations. Then in Section 3, we define cotriple products, our non-linear generalisation of
Massey products, and show that they are homotopy invariant for well-behaved classes of
algebras. In Section 4, we study the case of strictly commutative dg-algebras and construct
various counterexamples. Finally in Section 5, we prove our rectification result.

Notation and conventions

In this chapter, we work on the category of unbounded chain complexes over some base
field or ring with cohomological convention. That is, the differential d : A∗ → A∗+1 of a chain
complex (A,d) is of degree 1. The degree of a homogeneous element x is denoted by |x|.
The symmetric group on n elements is denoted Sn . We follow the Koszul sign rule. That

is, the symmetry isomorphism U ⊗V
∼=−→ V ⊗U that identifies two graded vector spaces is

given on homogeneous elements by u⊗v 7→ (−1)|u||v |v ⊗u. Algebras over operads are always
differential graded (dg) and cohomological. We will frequently omit the adjective "dg" and
assume it is implicitly understood. Finally, when A is a ring of characteristic p for a prime p,
Ap will be the subring {ap : a ∈ A}.

This is a short chapter and we do not intend to load it excessively with recollections; so
therefore we refer to [56] for the definition of an operad and other basic notions.

3.2 Preliminaries

3.2.1 Three flavours of algebra over an operad

Divided power algebras were first introduced for the commutative operad by Cartan [18],
generalised to the general operadic setting by Fresse [34] and studied further by Ikonicoff
[48]. In this section, we carefully define them and, in particular, we explain the free graded
commutative divided powers algebra on a free module.
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Recall that an algebra A over a operad P is defined to be an algebra over the following
monad

P (V ) = ⊕
n≥0

(
P (n)⊗V ⊗n)

Sn
,

where the coinvariants are taken with respect to the action of the symmetric group on V ⊗n

given by permutation of factors in the tensor product. In characteristic zero, assuming P (n)
is finitely generated as a representation of Sn , this is the same monad taking invariants

P (V ) = ⊕
n≥0

(
P (n)⊗V ⊗n)Sn .

However, when we are not working over a field of characteristic zero, these notions do not
coincide. This motivates the following definition.

Definition 3.2.1. [34] Let A be dg-module over a commutative unital ring. We say that A is a
P -algebra if it is an algebra over the monad

P (V ) = ⊕
n≥0

(
P (n)⊗V ⊗n)

Sn
.

An algebra over the monad

ΓP (V ) = ⊕
n≥0

(
P (n)⊗V ⊗n)Sn ,

is referred to as a divided powers-P algebra.

In general, there is a universal map from coinvariants to invariants, the norm map

P (V ) → ΓP (V )

It follows that every divided powers P -algebra is a P -algebra. The image of the norm map is
usually denoted ΛP (V ) and is the third flavour of algebras.

We shall mainly be interested in the case P = Com, so it will be useful to have explicit
descriptions in this case.

Example 3.2.2. When P =Com and V = Fp , with the single basis element x,

ΓCom(V ) =
{
Fp [x1, x2, . . . ]/(xp

1 , xp
2 , . . . ) with |xk | = k|x|, when |x| is even.

Fp [x]/(x2) otherwise.

3.2.2 E∞-algebras and Steenrod operations

As a representation of Sn , Com(n) = k is not free. Unfortunately this means that the as-
sociated Schur functor behaves poorly in positive characteristic (see Example 3.4.1). The
traditional approach to remedying this is to find a weak equivalence of operads E

∼−→Com
such that, for each n, the action ofSn on E (n) is free. Any such operad is called an E∞-operad.
The model we shall use in this chapter is the Barratt-Eccles operad; where the action of the
symmetric group is free, which we briefly recall. For more details, see [6].

Definition 3.2.3. The simplicial sets defining the Barratt-Eccles operad in each arity are of
the form

E (r )n = {(w0, . . . , wn) ∈Sr ×·· ·×Sr }
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equipped with face and degeneracy maps

di (w0, . . . , wn) = (w0, . . . , wi−1, ŵi , wi+1, . . . , wn)

si (w0, . . . , wn) = (w0, . . . , wi−1, wi , wi , wi+1, . . . , wn).

The group Sr acts on E (n) diagonally, that is to say if σ ∈Sn and (w0, . . . , wn) ∈ E (n) then

(w0, . . . , wn)∗σ= (w0 ∗σ, . . . , wn ∗σ)

Finally the compositions are also defined componentwise via the explicit composition
law of

γ :S(r )⊗S(n1)⊗·· ·⊗S(nr ) →S(n1 +·· ·+nr )

(σ,σ1, . . . ,σr ) 7→σn1···nr ◦ (σ1 ×·· ·×σr )

where σn1···nr is the permutation that acts on n1 +·· ·+nr elements, by dividing them into r
blocks, the first of length n1, the second of length n2 and so on. It then rearranges the blocks
according to σ, maintaining the order within each block.

Remark 3.2.4. The Barratt-Eccles operad as defined above is an operad in simplicial sets.
However it becomes an operad concentrated in graded chain complexes, concentrated
in non-negatively degrees, after applying the singular chains functor. When we work in
cohomological grading and cochain complexes, it is therefore concentrated in non-positive
degrees and is unbounded below. In this chapter, the notation E shall always refer to the
operad in chain complexes.

One can check that the free algebra functor E (−) respects homotopy equivalences. In
other words, if V

∼−→W is a homotopy equivalence of dg-modules; then E (V )
∼−→ E (W ) is a

homotopy equivalence. Furthermore, the cohomology of E (V ) has an additional grading
induced by the operadic degree

E (V )i =
∞⊕

r=1
E (r )i ⊗Sr V ⊗r .

There is then an isomorphism Sym(H∗ (V ))
∼−→ H∗E (V )0, where Sym(−) is the symmetric

algebra functor.

Definition 3.2.5. [65] Let V be a dg-module over Fp . The Steenrod algebra on V is the
cohomology group A (V ) = H∗(E (V )).

Remark 3.2.6. Let V be a non-negatively graded dg-module. Then the Steenrod algebra
A (V ) will not be bounded below. However, if V is a non-positively graded dg-module, A (V )
will also be concentrated in non-positive degrees.

Given an E∞-algebra A, one has a map

A (H∗(A))
H∗(γ)−−−−→ H∗(A).

where γ is the E∞-algebra map E (A)
γ−→ A. In other words, the cohomology of an E∞-algebra

always carries an action of the Steenrod algebra.

3.2.2.1 Rectification

There is a weak equivalence of operads φ : E
∼−→Com, so it is natural to ask whether or not the

pair (φ∗,φ!) forms a Quillen equivalence between E∞-algebras and Com-algebras. If there
is, then rectification is said to occur. With coefficients in Q, this is indeed the case; see for
example [88]. In particular, this implies that that every E∞-algebra A has a commutative
model given by φ!(A).
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3.2.2.2 The homotopy theory of E∞-algebras and commutative dg-algebras

In this subsection we shall discuss the existence of model structures on categories of P -
algebras and specialise to the cases of E∞-algebras. One has the following general fact.

Theorem 3.2.7. [45] Let P be an S-split (or cofibrant) operad over a commutative ring R.
Then the category of P -algebras over R is a closed model category with quasi-isomorphisms
as the weak equivalences and surjective maps as fibrations.

The Barratt-Eccles operad is S-split. This immediately gives the model structure on
E∞-algebras over Fp .

Definition 3.2.8. The model category E∞−alg of E∞-algebras is the category of algebras over
the operad given by cochains on the Barratt-Eccles operad, in chain complexes over Fp . It
has quasi-isomorphisms of cochain complexes as weak equivalences and surjective maps as
fibrations.

We have already mentioned that in characteristic 0, the homotopy theory of commutative
dg-algebras coincides with that of E∞-algebras. In positive characteristic the relationship is
much more complex.

Quasi-isomorphisms of commutative dg-algebras are those algebra maps that are quasi-
isomorphisms of chain complexes. The category of commutative algebras thus has a well-
defined homotopy category given by localising at these quasi-isomorphisms. Promoting this
to a model category is possible [81] if one considers the category of Com-algebras over the
Eilenberg-MacLane spectrum HFp . This is equivalent to the category of dg-P -algebras in
R-modules. A weak equivalence in this setting is a weak equivalence of chain complexes, but
neither fibrations or cofibrations are easy to describe.

3.3 Cotriple products

3.3.1 Sullivan algebras

In this subsection, we explain how to construct a semi-free, and therefore, in the presence
of a model category, cofibrant, resolution of an algebra over an arbitrary operad P . The
following results are likely well known to experts but we could not locate a proof in the
literature.

Definition 3.3.1. Let P be an operad over a field and A is a P -algebra. A Sullivan model for
A is a quasi-free algebra f : (P (

⊕∞
i=0 Vi ),d)

∼−→ A such that

• the map f |V0 : V0 → A is a is a weak equivalence of dg-vector spaces.

• the differential satisfies d(Vk ) ⊆ P (
⊕k−1

i=0 Vi ) (the nilpotence condition). In particular
V0 = H∗(A).

• the map Vk ⊕ (P (
⊕k−1

i=0 Vi ) → A is a weak equivalence for each k.

Every P -algebra A over a field admits a Sullivan model. The argument is essentially the
same as [27, Proposition 12.1].

Proposition 3.3.2. Suppose either that P be an operad over a field and A is an arbitrary
P -algebra or that P be an operad over a ring and A is P -algebra equipped with a weak equiv-
alence of dg-modules map H∗(A)

∼−→ A. Then A has a Sullivan resolution m : (P (V ),d)
∼−→ A.

Proof. Let V0 = H∗(A) and choose a map

m0 : (P (V0),0) → A
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such that V0 → A is an isomorphism on cohomology.
Suppose that m0 has been extended to mk :

(
P

(⊕k
i=0 Vi

)
,d

)→ A. Let zα be cocycles in
P

(⊕∞
i=0 Vi

)
such that [zα] is a basis for ker H(mk ). Let Vk+1 be a graded space with basis

{vα} in 1−1 correspondence with the zα, and with |vα| = |zα|−1. Extend d to a derivation
in P

(⊕k
i=0 Vi

)
by setting d vα = zα. Since d has odd degree, d 2 is a derivation. Since d 2vα =

d zα = 0, we have that d 2 = 0.

Since H(mk )[zα] = 0, mk zα = d aα, aα ∈ A. Extend mk to a graded P -algebra morphism
mk+1 : P

(⊕k+1
i=0 Vi

)→ A by setting mk+1vα = aα. Then mk+1d vα = dmk+1vα, and so we havc
mk+1d = dmk+1.

We conclude our construction by setting V =⊕∞
i=0 Vi . We have a map m : (P (V ),d)

∼−→ A
such that m|Vk = mk . Since m|P (V0) = m0 and H(m0) is surjective, H(m) is surjective too. If
H(m)[z] = 0 then, since z must be in some P

(⊕k
i=0 Vi

)
, one has H(mk )[z] = 0. But then,

by construction z is a coboundary in P
(⊕k+1

i=0 Vi
)

, and so is a coboundary in (P (V ),d).
Therefore H(m) is an isomorphism.

The nilpotence condition on d is built into the construction.

Definition 3.3.3. We refer to the semifree algebra appearing in the previous proof

mk :

(
P

(
k⊕

i=0
Vi

)
,d

)
→ A

as a step k Sullivan resolution of A.

Sullivan algebras are essentially cofibrant objects.

Theorem 3.3.4. Let m : (P (V ),d) be a Sullivan algebra. Then the map 0 → (P (V ),d) has the
left lifting property against all surjective weak equivalences p : C → D.

Proof. We have the following diagram.

0 C

(P (V ),d) D

f

i p

g

h

The map h, is determined by the image of the generators v ∈V . We do this inductively. For
v ∈V0, we define h0 : P (V0) →C by f (v) = c where p(c) = g (v), which is defined since p is
surjective. Now assume that we have defined

(
P

(⊕k
i=0 Vi

)
,d

)→C . For vα ∈Vk+1, we claim
it possible to find cα ∈C such that p(cα) = g (vα) and dcα = h(zα). Let d vα = zα, then h(zα) is
a cocycle. Choose any lift c ′α such that dc ′α = h(zα). Moreover, we have p(h(zα)) = g (zα) =
g (d vα) = d g (vα). Therefore g (vα)−p(c ′α) is nullhomologous in D. There is therefore Kα ∈ D
such that dKα = g (vα)− p(c ′α). The cochain Kα has a preimage in Lα ∈ C and we define
cα = Lα+ c ′α. Finally, we define h(vα) = cα.

Remark 3.3.5. In particular, the surjective weak equivalences are the acyclic fibrations in
the setting of Theorem 3.2.7. Therefore, Sullivan models are cofibrant objects in this model
category.

Remark 3.3.6. An observation that will be important later is that, when g : (P (V ),d) → D
is a Sullivan resolution, the map h constructed in the proof also satisfies the conditions of
Definition 3.3.1.
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In what follows, we say that an operad P reflects homotopy equivalences if the free algebra
functor P (−) sends quasi-isomorphisms of cochain complexes to quasi-isomorphisms of
P -algebras.

Proposition 3.3.7. Let P be an operad over a field such that P reflects homotopy equivalences.
Let A be a P -algebra and let m : (P (V ),d)

∼−→ A be a Sullivan resolution. Then, for any P -
algebra B weakly equivalent to A there exists a m′ such that m′ : (P (V ),d)

∼−→ B is a Sullivan
resolution.

Proof. The P -algebra B must be connected to A via zig-zags of quasi-isomorphisms. So
it suffices to show that Sullivan resolutions can be transferred across quasi-isomorphisms
in both directions. So if there is a quasi-isomorphism f : A

∼−→ B , then m′ = f ◦m. Now,
suppose there is a quasi-isomorphism f : B

∼−→ A. One can associate an acyclic fibration to f
by choosing an acyclic complement W , in the category of graded vector spaces, in A to the
image of f ie. A = Im f ⊕W as graded vector spaces. This is not necessarily a chain complex
as it may not contain d w for each w ∈W but an acyclic chain complex W ′ may be obtained
from it by directly adding such missing coboundaries. Then the map f ′ : B ⊕P (W ′) → A
is an acyclic fibration and so is the projection π : B ⊕P (W ′) → B. The desired map is then
m′ =π◦h, where h : (P (V ),d)

∼−→ B ⊕P (W ′) is the Sullivan resolution coming from applying
from Remark 3.3.6 to f ′.

3.3.2 Cotriple products in positive characteristic

In this subsection we introduce a theory of higher Massey-like products for algebras over
operads over a field of arbitrary characteristic paralleling that of [31, 60, 69]. The operads here
are permitted to have a differential. The underlying idea is similar to that in [31]; we simply
wish to define a higher operation for every syzygy. In the setting of Koszul operads overQ, the
existence of minimal models for operads made this straightforward. In this context, Massey
products correspond to differentials in the Eilenberg-Moore spectral sequence.

In the positive characteristic setting, things are much more complicated. The existence
of the Frobenius map produces syzygies that mix the algebra and the operad in ways that
were not possible in zero characteristic. We therefore define a non-linear generalisation of a
Massey product called a cotriple product that captures this phenomenon.

The cotriple resolution. Let P be an operad and let A be a P -algebra. The cotriple resolution
ResP (A), which is a model for A in the category of free P -algebras, is a simplicial P -algebra
defined as follows. In simplicial degree n, one has

ResP (A)n =P ◦(n+1)(A)

where P ◦i indicates that the free algebra functor is applied i times. The face maps are given
by

d i
n : P ◦(n+1)(A) →P ◦n(A)

d i
n =

{
P (A)◦i ◦γP ◦P (A)◦(n−i−1)(k) for n = 0, . . . ,n −1.

P ◦(n−1) ◦γA for i = n.

where γP is the operadic composition map and γA : P (A) → A is the P -algebra map. The
degeneracy maps are defined by

si
n : P ◦(n+1)(A) →P ◦(n+2)(A)
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si
n =P ◦i ◦u ◦P ◦(n−i )(A)

where u : P → P ◦P is the unit map. This object can be realized as a chain complex
(|ResP (A)|,d +∂) where the d is the internal differential on A and ∂ is the differential coming
from the simplicial structure we have just defined. We remark that the cotriple resolution
has also been studied by Fresse [35].

The cotriple spectral sequence. The cotriple resolution (|ResP (A)|,d +∂) is defined as
the realization of a simplicial object and therefore admits a skeletal filtration. The cotriple
spectral sequence is the associated spectral sequence. A morphism of augmented P -algebras
naturally induces a morphism of the corresponding spectral sequences. The E 0-page of this
spectral sequence is explicitly given by

E p,q
0 =P ◦p (A)p+q

where the p +q grading is the total grading. The differential d 0 is therefore the usual differ-
ential on P ◦p (A).

Suppose now that the free algebra functor P reflects homotopy equivalences and there-
fore H∗(P (A)) = B(H∗(A)) for a functor B; it follows that the E1-page of the spectral se-
quence is

E p,q
1 = (

B(p)(H∗(A))
)p+q

and the differential on this page is therefore entirely determined by the depth 2 component
of the codifferential. For P = E , E 2

p,q is the free Steenrod algebra applied p times to the
cohomology of A.

Cotriple products. We shall refer to the higher differentials in this spectral sequence
as cotriple products. When P reflects homotopy equivalences, homotopy invariance is
immediate; as any weak equivalence of P -algebras induces an isomorphism of E1-pages.
Cotriple products are therefore well-defined as elements of E p,q

n in the spectral sequence.

Cotriple products in terms of Sullivan algebras. We shall give a second description which is
more in line with the classical definition of Massey products in terms of defining systems.
Theorem 3.3.12 gives the proof of the correspondence.

Definition 3.3.8. Let A be a P -algebra and fix a choice of f : (P (
⊕N

i=0 Vi ),d)
∼−→ A a N -step

Sullivan model for A. Consider the ideal I (
⊕N

i=1 Vi ) in (P (
⊕N

i=0 Vi ),d) generated by
⊕N

i=1 Vi .
Let σ ∈ I (

⊕N
i=1 Vi ) be a cocycle. A defining system for σ is a P -algebra map

gN : (P (
N⊕

i=0
Vi ),d) → A

such that H∗(gN )|V0 = H∗( f )|V0 . The σ-cotriple product set is given by the collection of
H∗(gN )(σ) where gN ranges across all choices of defining systems.

Remark 3.3.9. Both definitions have advantages. The spectral sequence definition immedi-
ately shows that cotriple products are homotopy invariant. The Sullivan algebra definition
shows that Massey products are examples of cotriple products.

Rather like usual Massey products, one only needs to compute the σ-cotriple product set
rather than the indeteminacy in the spectral sequence to use cotriple products.

Proposition 3.3.10. Let P be an operad that reflects homotopy equivalences. A morphism of
P -algebras f : A → B preserves cotriple product sets. If furthermore f is a quasi-isomorphism,
then f∗ induces a bijection between the corresponding cotriple product sets.
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Proof. The first statement is straightforward as one can verify that given a σ-defining system

gN : (P (
N⊕

i=0
Vi ),d) → A,

postcomposing by f gives a defining system hN on B such that f ∗H∗(gN )|V0 = H∗(hN )|V0 .
Therefore the σ-cotriple product set on B is a subset of that on A.

To prove the second statement, first observe that if the quasi-isomorphism f : A → B is
surjective, one may lift any defining system on gN : (P (

⊕N
i=0 Vi ),d) → B via the algorithm of

Theorem 3.3.4. The general case follows from a similar argument to Proposition 3.3.7, as in
the proof of that result, one may replace the map f with a zig-zag of quasi-isomorphisms

A
g←−C

h−→ B where B is surjective. One can then lift the defining system to C and then push it
forward to A.

Remark 3.3.11. This definition allows us to extend the notion of cotriple products to algebras
over other operads, like the commutative operad, where P is not a functor that reflects
homotopy equivalences. In this case, we cannot necessarily deduce the homotopy invariance
of such products automatically (and indeed, frequently they will not be, see Example 3.4.26).
Therefore, each time we define such a product, we shall need to manually check homotopy
invariance.

The next theorem essentially states that this formulation of cotriple products is equivalent
to the spectral sequence one.

Theorem 3.3.12. Let P be an operad that reflects homotopy equivalences. Let A be a P -
algebra and fix a choice of f : (P (

⊕N
i=0 Vi ),d)

∼−→ A a N -step Sullivan model for A. Let σ ∈
I (

⊕N
i=1 Vi ) be a cocycle. Then there exists an element

G(σ) ∈P ◦N (H∗(A))

which survives to the EN -term of the P -cotriple spectral sequence, and

dN−1 ([G(σ])) ∈ (−1)N−2 [
id⊗H∗( f (σ))

]
.

To prove this we shall make use of the Staircase Lemma [53, Lemma 2.1], which we briefly
recall next.

Lemma 3.3.13. Let A = (
A∗,∗,d ′,d ′′) be a bicomplex, denote by d the differential on its

total complex, and fix c1, . . . ,cn homogeneous elements in A. Suppose that d ′cs = d ′′cs+1 for
1 ≤ s ≤ n−1, and define c := c1−c2+·· ·+(−1)n−1cn . Then, dc = d ′c+d ′′c = d ′′c1+(−1)n−1d ′cn ,
and furthermore, in the spectral sequence

{
(E r ,d r )

}
associated to the bicomplex, if d ′′c1 = 0

then c1 survives to E n , and d n[c1] = (−1)n−1[d ′cn].

Our approach to proving Theorem 3.3.12 is therefore to construct a sequence c1, . . .cr−1

satisfying the conditions of the Staircase Lemma.

Proof of Theorem 3.3.12. Our first step is to recursively define a sequence x0, . . . , xN where

xi ∈P ◦i

(
r (i )⊕
j=0

V j

)

for some r (i ) ≤ k. Firstly, let x0 = σ ∈ P (
⊕k

i=0 Vi ) = P ◦1(
⊕k

i=0 Vi ). Then one obtains an

element of x1 ∈P ◦2(
⊕k−1

i=0 Vi ) by replacing every occurrence of an element in vn ∈Vk by the
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formula for d vn ∈P (
⊕k−1

i=0 Vi ) and identifying P ◦P (
⊕k−1

i=0 Vi ) =P ◦2(
⊕k−1

i=0 Vi ). Continuing
this procedure, we obtain xi for i = 0, · · ·k. There are maps

gk : P ◦l (
k−l⊕
i=0

Vi ) →P ◦l (A)

defined on generators v ∈Vi by
v 7→ f (v).

We define ci = gn−i−1(xn−i−1). The element G(σ) in the proof statement is d(c0).
To finish, we must verify that the conditions of the Staircase Lemma 3.3.13 are met.

Denote by ∂ the external differential on P (A), and by d∗ its internal differential. Then, since
d v = 0 for each v ∈V0, it follows that d∗c1 = 0. A routine calculation shows that d∗cs+1 = ∂cs

for each s. It follows from the Staircase Lemma that

dn−1[c1] = (−1)n[∂cn−1] = (−1)n[ f (σ)].

This concludes the proof.

3.4 Cotriple products for strictly commutative dg-algebras

In this section, we shall apply the theory of cotriple products developed in the last section to
the case of strictly commutative algebras.

3.4.1 Secondary cotriple products

Fundamentally, the main difference between the rational and p-adic commutative dg-
algebras is that the Sym functor does not behave well homotopically in positive charac-
teristic.

Example 3.4.1. The functor Sym : dg−R−mod→ dg−R−Com−alg does not reflect homo-
topy equivalence. For example, when R = Fp , the dg-modules V = 0 and W = [Fp x → Fp d x]
are homotopy equivalent. However H∗(Sym(V )) = 0, while H∗(W ) is non-zero as xp repre-
sents a nontrivial cohomology class.

The reader should be warned that the theory of commutative dg-algebras in positive char-
acteristic is less gentle than the rational case. For example, commutative dg-algebras over
Fp possess higher commutative operations, that is cotriple products that do not arise in the
same way as classical higher Massey products of [60] and [31]. We shall use these to produce
some examples; notably examples of dg-algebras over Zwith torsion-free cohomology that
are formal overQ but not over Fp . The first examples of these is the following.

Definition 3.4.2. Let A be a commutative dg-algebra over Fp . Let x, y ∈ H∗(A) be homoge-
neous elements such that x y = 0. Choose cocycles a,b ∈ A representing x, y respectively.
Then there exists c ∈ A such that dc = ab. Then cp is a cocycle which we call the type 1
secondary Frobenius product of x and y . Like classical Massey products, this operation has
indeterminancy. Indeed, if we choose another lift dc ′ = ab it must differ from the element c
by a cocycleσ ∈ Z |x|+|y |−1. So c ′p = cp+σp . So, for p = 2, cp represents a well defined element
of

H p(|x|+|y |−1)(A)

H (|x|+|y |−1)(A)p +xp H p(|y |−1)(A)+ y p H p(|x|−1)(A)

123



where the term xp H p(|y |−1)(A)+ y p H p(|x|−1)(A) in the denominator accounts for the choice
of representatives x and y. If the prime p odd, assume without loss of generality, that |x| is
even and |y | is odd. Then cp is a well-defined class of

H p(|x|+|y |−1)(A)

H (|x|+|y |−1)(A)p + y p H p(|x|−1)(A)
.

Remark 3.4.3. The striking difference between Type 1 Frobenius operations and ordinary
Massey products in characteristic 0 is the dependence of the indeterminacy on the initial
choice of cocycles. For a concrete example of this in practice, see Example 3.4.26. This is
an added complication with the development of cotriple products in positive characteristic.
The underlying reason for this problem is very simple, as an E∞-algebra over F2, c ⊗ c is not
always a cocycle, but if we work with the cup-1 algebras defined in Subsection 3.4.2

c ⊗ c + c ∪1 (a ⊗b)+a⊗2 ⊗K +L⊗b⊗2

is, where a,b,c are as above, dL = a ∪1 a and dK = b ∪1 b. The extra term comes from the
fact that, in a cup-1-algebra, one can add cocycles to K and L.

For odd primes, there is a second type of secondary cohomology operation on commuta-
tive dg-algebras.

Definition 3.4.4. Let p be an odd prime and A be a commutative dg-algebra over Fp . Then
there is a type 2 secondary Frobenius product defined for homogeneous elements x, y ∈ H∗(A)
such that x y = 0. Choose cocycles a,b ∈ A representing x, y respectively. Then there exists
c ∈ A such that dc = x y. Then, it follows from the graded commutativity of multiplication
that cp−1ab is a cocycle which we call the type 2 secondary Frobenius product of x and y . In
this case, the operation represents a well-defined element of

H (p−1)(|x|+|y |−1)+|x|+|y |(A)

H (|x|+|y |−1)(A)p−1x y

Such operations do not exist over F2 as there is no reason for cp−1ab to be a cocycle.
This is because the relation x2 = 0 for |x| odd does not hold for commutative dg-algebras in
characteristic 2.

Remark 3.4.5. Observe that d( 1
p cp ) = cp−1ab. Therefore type 2 secondary Frobenius prod-

ucts vanish on divided power algebras. Therefore this kind of operation provides an obstruc-
tion for a commutative dg-algebra A to be weakly equivalent to a divided power algebra. It is
obvious that non-zero type 1 Frobenius operations are also obstructions as (−)p vanishes on
divided power algebras.

The next lemma is a short verification that our operation is well defined.

Lemma 3.4.6. Up to indeterminacy, the secondary Type 1 and Type 2 Frobenius products of
x, y ∈ H∗(A) do not depend on the choice of cocycles representing x or y.

Proof. Let a′ and b′ respectively be an alternative choice of cocycles representing x, y . Then
a′−a = dK and b′−b = dL are coboundaries. Let c ′ = c +aL+b′K . Then we have dc ′ = a′b′.
Moreover, we have (c ′)p = cp + ap Lp + (b′)p K p . Observe that K p and Lp are cocycles and
therefore represent elements of H p(|x|−1)(A) and H p(|y |−1)(A) respectively. We therefore have
that cp and (c ′)p represent the same element of

H p(|x|+|y |−1)(A)

H (|x|+|y |−1)(A)p +xp H p(|y |−1)(A)+ y p H p(|x|−1)(A)
.
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If p is odd, it follows that |K | is odd, and we have that cp and (c ′)p represent the same element
of

H p(|x|+|y |−1)(A)

H (|x|+|y |−1)(A)p + y p H p(|x|−1)(A)
.

Now we consider the case of Type 2 operations. Let a′,b′,c ′,L,K all be defined as before.
Then we have

(c ′)p−1a′b′ = (c +aM +MdL+bL)p−1(dL+a)(d M +b)

This can be written as

(c)p−1ab +d

 ∑
i+ j=p
i , j ̸=0

1

i

(
p −1

i

)
c i (aM +MdL+bL) j


We have therefore that (c ′)p−1a′b′ and (c)p−1ab represent the same element of

H pn (|x|+|y |−1)+|x|+|y |(A)

H (|x|+|y |−1)(A)pn−1
.

This proves the lemma.

The following lemma is straightforward consequence of the previous one.

Lemma 3.4.7. Secondary Frobenius products are homotopy invariant. That is, if x, y ∈ H∗(A1)
are homogeneous elements such that their secondary Frobenius product z is defined then for
any zig-zag of quasi-isomorphisms

A1 A2 · · · An
f1 f2 fn−1

the Massey product of f ∗
1 ( f ∗

2 )−1 · · · f ∗
n−1(x) and f ∗

1 ( f ∗
2 )−1 · · · f ∗

n−1(y) is, up to indeterminacy,
equal to f ∗

1 ( f ∗
2 )−1 · · · f ∗

n−1(z) in H∗(An).

The most immediate application of these cohomology operations is that they provide
extra obstructions when comparing commutative dg-algebras. Our first example is an algebra
with no torsion in its cohomology that is formal overQ but not F2.

Example 3.4.8. Consider the case p = 2 and consider the following dg algebras over Z.

A = Sym(x, y, z)/(x y, xz, y z) B = Sym(x, y, z, t )/(t p − z, t z, xz, y z, t p+1, t p−1x, t p−1 y)

where x, y, z are cocycles, we have d t = x y and |x| = |t | = 2, |y | = 1 and |z| = 2p.
A set of generators for A as a free Z-module is given by {x, x2, x3, · · · , y, z, z2, z3, · · · } and its

cohomology ring is A itself. For B , one has a set of generators given by

{zi for i ≥ 1}∪ {t i x j yk , for p −2 ≥ i ≥ 1, j ≥ 0 and k ∈ {0,1}}

Therefore, by direct computation, one has that the cohomology of B is equal to A. However,
by Lemma 3.4.7, they are not quasi-isomorphic as commutative dg-algebras as all the sec-
ondary Frobenius products in A vanish, while in B the secondary Frobenius product of x
and y is {z}. However, these algebras are quasi-isomorphic overQ via the zig-zag

A
f←− Sym(x, y, z, t )/(xz, y z)

g−→ B

where d t = x y and f , g are the obvious projection maps. So B is formal overQ but not F2.
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Remark 3.4.9. Formal algebras have vanishing Massey products. The previous example
therefore demonstrates that Frobenius products are a different set of invariants to classical
Massey products.

The problem with extending Example 3.4.8 to Fp directly is that the element t y ∈ B
becomes the Massey product < x, y, y > as y2 = 0. We therefore alter it slightly to produce an
example of two algebras with the same cohomology that are quasi-isomorphic overQ but
not Fp

Example 3.4.10. Consider the following dg algebra over Z.

A = Sym(x, y, z, t )/(x, y, z2, xz, y z, t z, t p , t p−1x, t p−1 y)

where d t = x y , |x| = |t | = 2, |y | = 1 and |z| = 2p.. A basis for A is given by

{x, x2, x3, · · · , y, z}∪ {t i x j yk for p > i ≥ 0, j > 0,k ∈ {0,1}}

With coefficients in eitherQ or Fp , the cohomology of A is therefore

Sym(x, y, z)/(x y, y z, xz)∪ (s1, s2, . . . sp−1)

where the added elements are Massey products si = t i y =< x, y, si−1 > in A.
Our second algebra is

B = Sym(x, y, z, t )/(t p − z, t z, xz, y z, t p+1, t p−1x, t p−1 y, )

where x, y, z are cocycles, we have d t = x y and d s = t y and |s| = |x| = |t | = 2, |y | = 1 and
|z| = 2p.

For B , one has a basis given by

{zi for i ≥ 1}∪ {t i x j yk , for p −2 ≥ i ≥ 1 and j ,k ≥ 0}

Therefore, by direct computation, one has that the cohomology of B is equal to A. However,
by Lemma 3.4.7, they are not quasi-isomorphic as commutative dg-algebras as all the sec-
ondary Frobenius products in A vanish, while in B the secondary Frobenius product of x
and y is {z}. However, these algebras are quasi-isomorphic overQ via the zig-zag

A
f←− Sym(x, y, z, t )/(xz, y z)

g−→ B

where d t = x y and f , g are the obvious projection maps.

Lastly, we give a counterexample constructed using a Type 2 Frobenius product.

Example 3.4.11. Here we give an example of an algebra that has a divided power structure
on its cohomology is nonetheless not quasi-isomorphic to a divided power algebra. For this
we use type 2 Frobenius products. Consider the following dg-algebra

A = Sym(x, y, z, t )/(xz, y z, zsi , sp−1x, sp−1 y, si s j −xsi+ j , sp x, sp y)

Sym(Fp〈x, y, z〉, t )/(t p , t p−1 y − z, t x2)

where d t = x y and the degrees |x|, |t | are even and |y |, |z| are odd. The cohomology of this
is given by (Fp〈x, y, z,c1,c2, . . .cp−2〉/(x y,ci c j , xci , yci , zci )), where the ci = t i y , which is a
divided powers algebra. Nonetheless, the type 2 Frobenius product of x, y is xz so by Remark
3.4.5 it cannot be quasi-isomorphic to a commutative algebra that can be equipped with the
structure of a divided powers algebra.
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We conclude this section with a brief completeness result.

Definition 3.4.12. We call a cotriple product primitive if it arises from monomial relations in
cohomology.

Proposition 3.4.13. All secondary primitive cotriple products on a commutative dg-algebra A
over Fp are linear combinations of

• classical Massey products.

• Type 1 secondary Frobenius operations

• Type 2 secondary Frobenius operations.

Proof. Let Sym(V0 ⊕V1) → A be a step 2 Sullivan resolution. We recall that secondary co-
homology operations are precisely given by terms representing cohomology in I (Sym(V1)).
These can be directly verified to be linear combinations of elements of the following form

xpn
, xpn−1d x, uc −av

where x,u, v ∈V1 and du = ab and d v = bc for a,b,c ∈ Sym(V0). These corresponds to type 1
and type 2 Frobenius products and classical Massey products respectively.

3.4.2 The relationship between associative and commutative alge-
bras

In [17], the authors raise the question of whether two commutative dg-algebras are quasi-
isomorphic as associative dg algebras if and only if they are also quasi-isomorphic as com-
mutative dg algebras. They prove the following theorem.

Theorem 3.4.14. [17, Theorem A] Let A and B be two commutative dg algebras over a field of
characteristic zero. Then, A and B are quasi-isomorphic as associative dg algebras if and only
if they are also quasi-isomorphic as commutative dg algebras.

We give a counterexample this in positive characteristic using Frobenius product obstruc-
tion theory. Similar examples should hold at all primes. More precisely, our statement is the
following.

Theorem 3.4.15. There exists A and B be two commutative dg algebras over a field of charac-
teristic two which may be distingushed via their type 1 Frobenius operation. Nonetheless, there
exists an associative algebra C such that there is a zig-zag of associative weak equivalences

A
∼←−C

∼−→ B

Since it must have commutative cohomology, such an algebra C must be commutative up
to homotopy (in the most naive sense possible). We shall capture this idea using the notion of
a lax cup-1-algebra which we introduce in subsubsection 3.4.2.1. The key idea is that type 1
Frobenius products may be defined on such algebras but they have a different indeterminacy
there than on commutative algebras; we study this phenomenon in Proposition 3.4.20. In
subsubsection 3.4.2.3, we define the commutative algebras A and B. In subsection C , we
define the lax cup-1-algebra C and compute its cohomology. Finally in subsubsection 3.4.2.5,
we give the maps appearing in the zig-zag in Theorem 3.4.15.
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3.4.2.1 Cup-1-algebras

We recall the following flavour of algebra. They are essentially commutative algebras up to
homotopy (but not coherently) and are similar to those appearing in [74].

Definition 3.4.16. A lax cup-1-algebra is a chain complex A equipped with two binary
operations ∪ and ∪1. The operation −∪− is degree 0 and associative. The second −∪1 − is
degree −1 and associative. These are intertwinned by two identities. First we have the Hirsch
identity, namely that

(u ∪ v)∪1 w = u ∪ (v ∪1 w)+ (u ∪1 w)∪ v (3.1)

Secondly, we have the Steenrod relation

d(u ∪1 v) = (du ∪1 v)+ (u ∪1 d v)+ (u ∪ v)+ (v ∪u) (3.2)

A cup-1-algebra is described as strict if ∪1 is graded commutative. A morphism of cup-1-
algebras is a morphisms that preserves both operations.

Lemma 3.4.17. A strict cup-1-algebra structure on A extends to an E -algebra structure.

Proof. In the surjection operad, which is a quotient of E defined in [6], ∪ corresponds to
the operation (1,2) ∈X (2)0 and ∪1 corresponds to (1,2,1) ∈X (2)1. Consider the quotient
operad of X given by quotienting by all operations not generated by these operations. Since
(1,2,1,2) ∈ X (2)2 vanishes, we obtain the commutativity of ∪1. The Steenrod and Hirsch
relations can now be obtained by routine computations.

Remark 3.4.18. Strictly commutative algebras are examples of cup-1-algebras such that the
∪1 operation is identically 0. The Steenrod relation then ensures strict commutativity.

The following definition will be useful for our later computations.

Definition 3.4.19. Let U = Cup(X )/(R) be (lax) cup-1-algebra presented in terms of genera-
tors and relations. Let m be a monomial in A, constructed from the generators using both ∪1

and ∪. Then m is reduced if it is written as

m = m1 ∪m2 ∪·· ·∪mn

where each mi is a monomial constructed only using the ∪1 operation.

Clearly, the free cup-1-algebra has a basis consisting of reduced monomials.

3.4.2.2 Frobenius products for cup-1-algebras

Next, we describe the Frobenius products that exist on cup-1-algebras.

Proposition 3.4.20. Let A be a cup-1-algebra that is quasi-isomorphic to a strictly commuta-
tive dg-algebra. Then the following is a cocycle

c ∪ c + c ∪1 (a ∪b)+K

where dc = a ∪b, dK = (a ∪b)∪1 (a ∪b). If, furthermore, A is a strict cup-1-algebra, then this
operation is equivalent to

c ∪ c + c ∪1 (a ∪b)+a2 ∪K ′+L′∪b2.

where dK ′ = b ∪1 b and dL′ = a ∪1 a.
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Remark 3.4.21. The equivalence of A to a strictly commutative dg-algebra guarantees the
existence of K and L as b ∪1 b and a ∪1 a represent Steenrod operations and these must
vanish for a strictly commutative algebra.

Proof. The proof is a completely straightforrward computation which is nonetheless peda-
gogic.

dc ∪ c = (a ∪b)∪ c + c ∪ (a ∪b)

This is nonzero as ∪ is not commutative. Next, one has, by the Steenrod identity

d(c ∪1 (a ∪b)) = (a ∪b)∪ c + c ∪ (a ∪b)+ (a ∪b)∪1 (a ∪b)

Finally one has

d
(
a2 ∪K +L∪b2)= a ∪ (b ∪1 (a ∪b))+ (a ∪1 (a ∪b))∪b = (a ∪b)∪1 (a ∪b)

or, if A is strict, this can be written as

d
(
a2 ∪K ′+L′∪b2)= a2 ∪ (b ∪1 b)+ (a ∪1 a)∪b2 = (a ∪b)∪1 (a ∪b)

where the last equality follows from the Hirsch identity applied twice. Summing all three
expressions one gets zero; which proves that the expression is a cocycle.

The expression above allows one to compute the indeterminacy of this higher cup-1-
product operation which can be computed on strict algebras to be

H 2(|x|+|y |−1)(A)

H (|x|+|y |−1)(A)2 +x2H 2(|y |−1)(A)+ y2H 2(|x|−1)(A)
.

In other words, it is the same as in the commutative case. The main difference here is that, in
this case, they fill out the complete indeterminacy.

The point of using lax cup-1-algebras however, is that K does not split apart in the same
way as in the strict case. This means that the operation has larger indeterminacy.

3.4.2.3 The commutative algebras

In this subsubsection, we shall construct the commutative algebras A and B from Theorem
3.4.15. Consider the following strictly commutative dg-algebras over F2,

A = Sym(x, y, z)/(x3, y3, x y, z2, x2 y, y x2, x2 y, y x2, y z, z2)

where |x| = |y | = 2, |z| = 4. The algebra A has the following linear basis {x, x2, y, y2, z, xz, a}
and coincides with its cohomology. Then we have

B = Sym(x, y, z, t )/(x3, y3, az, t xi y j , t 3, t 2 −x y z2, x2 y, y x2, x2 y, y x2, az, y z, z2, ax, ay, at a2)

such that |t | = 3 and d t = x y and where i , j range over the positive integers such that i + j = 2.
It is easy to explicitly write down a basis for B as

{x, x2, y, y2, z, xz, x y, x2 y, x y2, x2 y2, t , t x, t y, t x y}

and one then easily verifies that its cohomology is equal to A. Finally we have

B = Sym(x, y, z, t )/(x3, y3, az, t xi y j , t 3, t 2 +x y z2, x2 y, y x2, x2 y, y x2, az, y z, z2, ax, ay, at a2)

Next one computes the Frobenius operation of x and x2. These operation is clearly strictly
defined. Moreover, for A it is {0}, but for B it is {x y}. These are both in different indeterminacy
classes, so it follows that the algebras cannot be quasi-isomorphic either as commutative
algebras.
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3.4.2.4 The cup-1-algebra C

In this subsubsection, we shall construct the associative algebra C from Theorem 3.4.15.
Consider the lax cup-1-algebra C generated by the elements x, y, t subject to the following

• x, y, z are cocycles, d t = x ∪ y

• One has |x| = |y | = 2, |z| = 4, |t | = 3.

• We set S = x∪1 t+t∪1 x and T = y∪1 t+t∪1 y . Clearly dT = (y∪1 x y),dS2 = (x∪1 x y). This
seem unnecessarily confusing now, but will greatly simplify the notation for describing
the maps.

• We quotient out by every monomial containing z, except z, x ∪ z and z ∪x; and we also
quotient by x ∪ z + y ∪ z.

• x and y commute and we quotient out by x ∪1 x, x ∪1 y, y ∪1 x, y ∪1 y .

• Ignoring z, we introduce a new degree called x-word length, denoted |−|x where |y |x = 0,
|x|x = |T |x = 1, |t |x = 1, |S| = 2. Similarly, we have y-word length, denoted | − |y where
|x|y = 0, |y |y = |S|y = 1, |t |y = 1 and |T |y = 2. We consider word-length to be additive un-
der both ∪ and ∪1. The total word length is the sum of the word lengths. The differential
can easily be checked to preserve word length. We kill all monomials of x- or y-word
length 3 or greater.

• Finally, we impose the relation that t ∪ t + t ∪x y +x ∪T + y ∪S = 0

In the proof of the following proposition, we also present a linear basis for this algebra with
32 elements. This is probably significantly easier to parse.

Proposition 3.4.22. The cohomology of C is equal to

Sym(x, y, z, a)/(x3, y3, x y, z2, x2 y, y x2, x2 y, y x2, az, y z, z2, ax, ay, a2)

where |x| = |y | = 2, |z| = 4 and |a| = 6 and, in our previous notation, where a = t ∪ t + t ∪x2 +
L1 +L2.

Proof. Observe that the differential preserves x- or y-word-length and that our relations
are homogeneous in word length since they are monomial. It follows that every cocycles
can be written as the sum of cocycles that are homogeneous in word length. Therefore,
if C = ⊕6

i=1 Ci then H∗(C ) = ⊕6
i=1 H∗(Ci ). We proceed by computing a basis of reduced

monomials.

Before proceeding further in the calculation, we make the following observation: one
always has a linear generating set consisting of reduced monomials. We can also ignore
the monomials containing z as there is only three of them. Therefore we can do a direct
computation.

First of all, one has that C1 = F2x. It is completely straightforward to directly check the
following by hand on reduced monomials.

Total word length 1

Degree Basis
2 x, y

Total word length 2

Degree Basis
3 t
4 x2, x y, y2
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Total word length 3

Degree Basis
4 x ∪1 t , y ∪1 t ,T,S
5 x ∪ t , t ∪x, y ∪ t , t ∪ y, x ∪1 (x y), y ∪1 (x y)
6 x2 y, x y2,

Total word length 4

Degree Basis
6 x ∪T,T ∪x,S ∪ y, (x ∪1 t )∪ y, (y ∪1 t )∪x, x ∪ (y ∪1 t ), t ∪1 t
7 x y ∪ t , t ∪x y, x ∪ t ∪ y, y ∪ t ∪x, x ∪ (y ∪1 x y), (y ∪1 x y)∪x, (x ∪1 x y)∪ y, t ∪1 x y
8 x2 y2

In the last table, t ∪ t = t ∪x y +x ∪S +T ∪ y . We have also used that

x ∪T + y ∪S +T ∪x = y ∪S

(x ∪1 t )∪ y + (y ∪1 t )∪x +x ∪ (y ∪1 t ) = y ∪ (x ∪1 t )

which come from the Hirsch identities.

3.4.2.5 The zig-zag

In this subsubsection, we shall construct the weak equivalences in the zig-zag from the
statement of Theorem 3.4.15. Clearly, the algebra C is associative with respect to cup product
∪ by the definition of lax cup-1 algebras. The first map

f : C → A

is given by sending x, y, z to themselves, and t ,S,T to 0. We send all elements in the basis we
computed that contain a ∪1 to 0. This map is a quasi-isomorphism as it sends the generators
of the cohomology to themselves. The other map is

g : C → B

which is given by sending x, y, z to themselves, T 7→ y and t ,S 7→ 0. We send all elements in
the basis we computed that contain a ∪1 to 0. This map is also a quasi-isomorphism. The
reader should note that these are maps of associative algebras, they are not maps of lax cup-1
algebras as T and S are not independent of x and y in the cup-1-algebras.

Since these maps are quasi-isomorphisms of associative algebras, we conclude that A
and B are weakly equivalent as associative algebras but not as commutative algebras.

3.4.3 Higher order cotriple products

In this section, we shall define and study some families of primitive higher order cotriple
products. As we saw in Subsection 3.4.1, secondary cotriple products generally behave
quite well for commutative dg-algebras. The only property that they lack is filling out the
whole indeterminacy. Unfortunately, this failure then directly implies that the higher order
operations will not be definable on every choice of model. This then breaks the homotopy
invariance of such operations.
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Example 3.4.23. There are cotriple products of all orders. One way to see this is to choose
a vanishing nth order Massey product mn(x1, x2, · · · , xn) = dc. Then cp is a Type 1 higher
operation of order n +1.

The next example gives an explicit family arising directly from Type 1 Frobenius opera-
tions. The reader should be warned that we shall see shortly that this family is not always
homotopy invariant.

Definition 3.4.24. Let A be a commutative dg-algebra over Fp . Let x, y ∈ H∗(A) be homoge-
neous elements such that x y = 0. A defining system for a nth order type 1 Frobenius product
is a collection {a,b,c1, . . .cn−1} such that a,b are choices of cocycle representatives for x, y ,
dc1 = ab and cp

i = dci+1. The nth order type 1 Frobenius product is then cp
n . In particular,

second order type 1 Frobenius products coincide with those defined in Definition 3.4.2.

In order to be a useful class of operations it is important to compute the indeterminacy of
the class. However, this is more complicated than it appears, because, in general, secondary
cotriple products for the commutative operad do not completely fill out their indeterminacy.

Example 3.4.25. For example, if it exists, the third order type 1 Frobenius product on a given
algebra A will be a well-defined element of

H 4(|x|+|y |)−6(A)

H 2(|x|+|y |)−3(A)2 +x4H 4|y |−6(A)+ y4H 4|x|−6(A)
.

if there does not exist u, v ∈ H∗(A), both nonzero, such that x2u + y2v = 0. Otherwise each
relation x2u+y2v = 0 in cohomology will give rise to extra secondary non-primary Frobenius
operations in the obvious way. These will have some indeterminacy X and the denominator
of the above quotient will be H 2(|x|+|y |)−3(A)2 +x4H 4|y |−6(A)+ y4H 4|x|−6(A)+X .

This can be seen as follows: Firstly, we can add any choice of cocycle to c2. This accounts
for the H 2(|x|+|y |)−3(A)2 term. Then let a′ and b′ respectively be an alternative choice of
cocycles representing x, y . Then a′− a = dK and b′−b = dL are coboundaries. Let c ′1 =
c1 + aL + b′K . Then we have dc ′1 = a′b′. Moreover, we have (c ′1)2 = c2 + a2L2 + (b′)2K 2.
Suppose now that

dc2 = c1

then there exists dc ′2 = c ′1 if and only if there exists an R such that

dR = a2L2 + (b′)2K 2.

If there does not exist u, v ∈ H∗(A), both nonzero, such that x2u+ y2v = 0, we must have that
the cocycles L2 and K 2 are both zero in cohomology and hence, there exists S,T such that

dS = L2 dT = K 2

and therefore
R = a2S + (b′)2T

and therefore (c2+R)2 = c2
2+a4S2+(b′)4T 2, from whence comes the x4H 4|y |−6(A)+y4H 4|x|−6(A)

term in the indeterminacy.

However, a nth order Type 1 Frobenius product is not guaranteed to exist on commutative
dg-algebra A even if it does on other algebras weakly equivalent to A. This prevents Frobenius
products from being homotopy invariant. This is a counterexample to [31, Proposition 2.18]
in positive characteristic.
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Example 3.4.26. Consider the following dg-algebras over F2.

A = Sym(w, x, y, z)/(x2w − z, x y, xz, y z)

B = Sym(w, x, y, z, t )/(t 2 − z, xz, y z, t 3, y2w − z, )

where w, x, x ′, y, z are cocycles, we have d t = x y and d s = x−x ′ The cohomology ring of both
algebras is A. In this case, one can check that type 1 Frobenius product of x and y vanishes.
Define

C = Sym(w, x, x ′, y, z, s, t )/(t 2 − z, xz, y z, t 3, s3, y2w − z, s2 −w).

There is a zig of quasi-isomorphisms

A C B.∼ ∼

The third order type 1 Frobenius operation associated to the relation x y = 0 in cohomology
is defined in A and C , as the second order product set is {0} in A and {0, z} in C . However, it is
not defined in B as the second order type 1 Frobenius product set is {z}, which contains no
coboundaries.

The examples above imply that we need an extra condition to ensure that higher order
operations are homotopy invariant. One such condition is that the higher operation is
strictly defined. This condition has the added benefit of allowing easy computation of the
indeterminacy.

Proposition 3.4.27. Let A be a commutative dg-algebra and suppose x, y ∈ H∗(A) are such
that their type 1 nth Frobenius product is strictly defined, that is, that x y = 0 and

H p(|y |−1)(A) = H p(|x|−1)(A) = {0}

· · ·
H pn−1(|y |)−∑n−1

i=1 p i
(A) = H pn−1(|x|)−∑n−1

i=1 p i
(A) = {0}

and the (n −1)th Frobenius product is equal to 0. Then nth order type 1 Frobenius product is
defined and is a well-defined element of

H pn−1(|x|+|y |)−∑n−1
i=1 p i

(A)

H pn−1(|x|+|y |)−2n−1+∑n−1
i=0 p i

(A)p +xpn−1 H pn−1(|y |)−∑n−1
i=1 p i

(A)+ y pn H pn−1(|x|)−∑n−1
i=1 p i

(A)

and therefore is invariant under quasi-isomorphism.

Proof. The proof is by induction on the order of the operation. First observe that if it is
strictly defined, the secondary Frobenius operation represents a well-defined class of

H p(|x|+|y |−1)(A)

H (|x|+|y |−1)(A)p +xp H p(|y |−1)(A)+ y p H p(|x|−1)(A)
= H p(|x|+|y |−1)(A)

H (|x|+|y |−1)(A)p
.

Therefore it fills out its indeterminacy and the third order Frobenius operation is defined
at every commutative algebra. Finally it has a well defined indeterminacy, which can be
computed as follows . Recall from the proof of Lemma 3.4.6 that the Frobenius product set is
given by all elements of the form

cp
1 +ap Lp + (b′)p K p
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(using the notation from the proof of that proof). By assumption dc2 = cp
1 . But, one can also

choose c ′2 = c2 +σ such that

d(c2 +σ) = cp
1 +ap Lp + (b′)p K p

This implies dσ = ap Lp + (b′)p K p . By the strictly defined hypothesis, all such terms are
coboundaries. Moreover, both ap Lp and (b′)p K p are individually coboundaries. It follows
that σ can be factored as σ′+τ1 +τ2, where σ1 is a cocycle and

dτ1 = ap Lp dτ2 = (b′)p K p .

A priori, τ1 and τ2 are only defined up to cocycle, but any choice of cocycle can be added
to σ′, so we may assume they are unique for any given choice of a, a′,b,b′,L,K . Then, since
H p(|y |−1)(A) = H p(|x|−1)(A) = {0}, one has that dR = Lp and dS = K p . Therefore, we have that

c ′2 = c2 +σ′+ap R +bp S.

So
(c2)p = cp

2 + (σ′)p +ap2
Rp +bp2

Sp .

As Rp and Sp are cocycles, one has the desired indeterminacy. Therefore we have the desired
invariance under quasi-isomorphism.

Then, by induction, assume that the order k type 1 Frobenius product is defined and has
the desired indeterminacy. Moreover assume that order k type 1 Frobenius product set takes
the form of a subset of:{

cp
k +σp +apk

P p +bpk
Qp :σ ∈ Z pk−1(|x|+|y |)−∑k−1

i=1 p i
(A),

P ∈C pk−1(|y |)−∑k−1
i=1 p i

(A),Q ∈C pk−1(|y |)−∑k−1
i=1 p i

(A)
}

for a fixed ck ∈ Z pk−1(|y |)−∑k−1
i=1 p i

(A). Again, by the fact that the operation is strictly defined,
the order k type 1 Frobenius product is a well-defined element of

H pn (|x|+|y |)−∑n
i=1 p i

(A)

H pn−1(|x|+|y |)−2n−1+∑n
i=0 p i

(A)p
.

It follows that, if the class the order k type 1 Frobenius product in the above quotient is
0, it is always possible to find cp

k = dck+1. By the same argument as before, observe that

cp
k = d(ck+1+σ+τ1+τ2) for all cocyclesσ and dτ1 = apn−1

P p and dτ2 = bpn−1
Qp . The cocycle

σ accounts for the H pn−1(|x|+|y |)−2n−1+∑n
i=0 p i

(A)p in the indeterminacy calculation. The τ1 and
τ2 accounts xpn

H pn (|y |)−∑n
i=1 p i

(A)+ y pn
H pn (|x|)−∑n

i=1 p i
(A) in the indeterminacy. This shows

that the order (i +1)th operation has the correct indeterminacy. Moreover the order k +1
Frobenius product set has the correct form by the same reasoning as in the order 2 case.

3.5 Higher Steenrod operations as obstructions to recti-
fiablity

The purpose of this subsection is to set up an obstruction theory for commutativity, paral-
leling the obstruction theory for formality given by Massey products. Our obstructions will
be given by higher Steenrod products. The first application of this theory is the following
well-known folklore result that the author learned from some online lecture slides of Mandell
[59].
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Proposition 3.5.1. Let X be a topological space. The E∞-algebra C∗(X ,Fp ) admits a strictly
commutative model only if X is weakly homotopy equivalent to the disjoint union of con-
tractible spaces.

Proof. Suppose towards contradiction that E∞-algebra C∗(X ,Fp ) admitted a commutative
model in the category of Fp -commutative dg-algebras. Recall that C∗(X ,Fp ) admits Steenrod
operations on its cohomology. Such operations are preserved by quasi-isomorphisms of E∞-
algebras. All of these operations vanish on strictly commutative dg-algebras except for Pn x
when |x| = n. In particular, the zeroth Steenrod operation P0 x is always x on cohomology
of C∗(X ,Fp ), while P0 x vanishes on the cohomology of commutative dg-algebra, except
when |x| = 0. It follows that C∗(X ,Fp ) admits a commutative model only if its cohomology is
concentrated in degree 0.

We now proceed to define higher Steenrod operations. These will be our obstructions to
commutativity. These are essentially the subset of cotriple products given by the primary
Steenrod operations, and higher obstructions formed by syzgyies of Steenrod operations.

Definition 3.5.2. Consider the map of operads E → Com. Let (E (
⊕N

i=0 Vi ),d) be an N -step
Sullivan model. Then the Sullivan projection map is the map of E -algebras

πN : (E (
N⊕

i=0
Vi ),d) → (Sym(

N⊕
i=0

Vi ),d).

and is defined by induction on i as follows. When i = 0; π0 : E (V0) → Sym(V0) is the E -
algebra map directly induced by the map E → Com. Therefore we assume that there is a map
πk : (E (

⊕k
i=0 Vi ),d) → (Sym(

⊕k
i=0 Vi ),d). We define (Sym(

⊕k
i=0 Vi ),d) on generators via the

attachment map

dVk+1 → E (
k⊕

i=0
Vi ),d) → (Sym(

k⊕
i=0

Vi ),d)

and extend this as a derivation. The map πk therefore also extends to

πk+1 : (E (
k+1⊕
i=0

Vi ),d) → (Sym(
k+1⊕
i=0

Vi ),d)

by sending Vk+1 to itself.

Definition 3.5.3. Let E be a model for the E∞-operad, A be a E -algebra and letσ ∈ I (E (
⊕N

i=1 Vi ),d))
be a cocycle. There is a unique quasi-isomorphism E →Com. Then σ defines a higher Steen-
rod operation of order N if it appears in the kernel of the Sullivan projection map

E (
N⊕

i=1
Vi ),d) → Sym(

N⊕
i=1

Vi ),d).

Corollary 3.5.4. Let A be an E -algebra. Suppose A admits a higher Steenrod operation that
does not vanish as a differential in the cotriple spectral sequence. Then A is not rectifiable.

Proof. Any non-commutative higher Steenrod operation is always identically zero on a
strictly commutative dg-algebra B . This is because it can be written in terms of a defining
system in which every operation vanishes on B . Moreover higher Massey operations are
preserved by quasi-isomorphisms of E∞-algebras as differentials in the cotriple spectral
sequence. Therefore A cannot be quasi-isomorphic to a commutative dg-algebra.
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3.5.1 Necessary and sufficient condition for rectifiability

The purpose of this section is to show that our obstruction theory for commutativity is
essentially complete. In other words, we shall give a necessary and sufficient condition for
an arbitrary E∞-algebra A over Fp to have a commutative model. Note that in this case, by
Proposition 3.5.1 A will never have the homotopy type of a space. Our result is inspired by
the following classical result which we state first.

Theorem 3.5.5. [23] Let A be a commutative dg-algebra inQ-vector spaces. Letm= (Sym(
⊕∞

i=0 Vi ),d)
be the minimal model for A. Then A is formal if and only if, there is in each Vi a complement
Bi to the cocycles Zi , Vi = Zi ⊕Bi , such that any closed form, a, in the ideal, I ((

⊕∞
i=0 Bi ), is

exact.

Remark 3.5.6. The condition stated in this theorem is often referred as to the coherent
vanishing of Massey products. The reason for this is that any closed form a in the ideal
I ((

⊕∞
i=0 Bi ) is a Massey product in the sense of Definition 3.3.8, since the minimal resolution

can be upgraded to a Sullivan resolution. The condition that a is exact is precisely the
requirement that it vanish in cohomology.

When we are not working in the rational setting, there is no longer a preferred choice of
cofibrant resolution like the minimal model. Therefore our statement will be stated in the
language of Sullivan resolutions.

Definition 3.5.7. Let A be an E∞-algebra over Fp . Then the higher Steenrod operations
vanish coherently if for every Sullivan resolution (E (

⊕∞
i=0 Vi ),d) for A, there exists a splitting

Vi = Xi
⊕

Yi , with X0 =V0; such that (Sym(
⊕∞

i=0 Xi ),d) is a Sullivan algebra and the kernel of

(E (
∞⊕

i=0
Vi ),d) → (Sym(

∞⊕
i=0

Xi ),d)

is acyclic.

Remark 3.5.8. The cocycles appearing in the kernel represent Steenrod operations. For
example, the kernel of the E (V0) → Sym(V0) component are precisely the Steenrod operations
and the definition of a Sullivan algebra immediately implies that these extra cocycles are
killed by Y1.

Theorem 3.5.9. Let A be an E∞-algebra over Fp . Then A is rectifiable if and only if its higher
Steenrod operations vanish coherently.

Proof. First we prove the only if direction. That is to say that we first suppose that A is
rectifiable and we then we shall show that every Sullivan model for A admits a splitting
such that the conditions of Definition 3.5.7 are satisfied. If A is rectifiable it has a strictly
commutative model Ā. Since Sullivan models are cofibrant, it follows from Proposition 3.3.7
that one has a map

f : (E (
∞⊕

i=0
Vi ),d) → Ā

satisfying the axioms of a Sullivan algebra. We build the desired splitting by induction on i .
Firstly let X0 =V0 and Y0 = 0. Since Ā is strictly commutative, there is a factorisation

E (V0) Sym(X0)

Ā

g0

f |E (V0)

h0
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Consider the map

V1
d−→ E (V0)

g0−→ Sym(X0)

There is a splitting V1 = X1 ⊕Y1 such that Y1 is the kernel of this map and X1 is some comple-
ment to it.

Now inductively, we assume the splitting Vi = Xi ⊕Yi exists for i ≤ k and moreover that
there is a factorisation

E ((
⊕k

i=0 Vi ),d) Sym((
⊕k

i=0 Xi ),d)

Ā

gk

fk

hk

Then there is a splitting Vk+1 = Xk+1 ⊕Yk+1 such that Yk+1 is the kernel of the map

Vk+1
d−→ E ((

k+1⊕
i=0

Vi ),d)
gk−→ Sym((

k⊕
i=0

Xi )

and Xk+1 is some complement to it. The existence of the factorisation once again follows
from the fact Ā is commutative.

Lastly, we verify that this splitting satisfies the condition that the kernel of the projection

(E (
∞⊕

i=0
Vi ),d) → (Sym(

∞⊕
i=0

Xi ),d)

is acyclic. Suppose that σ ∈ (E (
⊕∞

i=) Vi ),d) is a cocycle in the kernel. Then we have that σ ∈
(E (

⊕N
i=0 Vi ),d) for some N . Since the map fN , by construction, factors through Sym(

⊕N
i=1 Xi ),d)

it follows that f (σ) = 0. It then follows from the second condition of Definition 3.3.1, that
there is τ ∈Vk+1 such that dτ=σ. It is clear from our definition of the splitting that τ ∈ YN+1.

Conversely, suppose that A is an E∞-algebra over Fp such that its higher Steenrod opera-
tions vanish coherently. Then, by definition, there is a quasi-isomorphism

(E (
∞⊕

i=0
Xi ⊕Yi ),d)

∼−→ A.

where (E (
⊕∞

i=0 Xi ⊕Yi ),d) satisfies the hypotheses of Definition 3.5.7. We claim that the
projection map

f : (E (
∞⊕

i=0
Xi ⊕Yi ),d) → Sym(

∞⊕
i=0

Xi )

is a quasi-isomorphism. The map f is surjective so, by the long exact sequence in cohomol-
ogy, it suffice to prove that the kernel of f is acyclic. This is precisely the coherent vanishing
condition.

The previous result has the following corollary; which is proven similarly.

Definition 3.5.10. Let A be an E -algebra. We say that it is formal if it is quasi-isomorphic to
H∗(A), regarding the cohomology as a commutative algebra.

Definition 3.5.11. Let A be an E∞-algebra over Fp . Then the cotriple products vanish
coherently if for every Sullivan resolution (E (

⊕∞
i=0 Vi ),d) for A, the ideal I (dV1⊕E (

⊕∞
i=1 Vi ),d)

is acyclic. Similarly,

Corollary 3.5.12. Let A be an E∞-algebra over Fp . Then A is formal as an E -algebra if and
only if its cotriple operations all vanish coherently.
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Proof. First we prove the only if direction. That is to say that we first suppose that A is formal
and we then we shall show that every Sullivan model for A, the cotriple operations vanish
coherently. It follows from Proposition 3.3.7 that one has a map

f : (E (
∞⊕

i=0
Vi ),d) → H∗(A)

that makes
(
(E (

⊕∞
i=0 Vi ),d), f

)
a Sullivan model for H∗(A). This map is clearly surjective

and therefore the kernel of f must be acyclic. If we show that the kernel is isomorphic to
I (dV1⊕E (

⊕∞
i=1 Vi ),d), we can conclude the result by the long exact sequence in cohomology.

First note that the map f |V0 = idH . Let

Wi = {v − (
f |V0

)−1 (
f (v)

)
: v ∈Vi }

Then, one can easily verify that the kernel of f is equal to I (dV1 ⊕E (
⊕∞

i=1 Wi ),d) and this is
isomorphic to the ideal I (dV1⊕E (

⊕∞
i=1 Vi ),d). In particular, both have the same cohomology

.

Conversely, suppose that A is an E∞-algebra over Fp such that its cotriple operations
vanish coherently. Then, by definition, there is a quasi-isomorphism

(E (
∞⊕

i=0
Vi ),d)

∼−→ A.

where I (dV1 ⊕E (
⊕∞

i=1 Vi ),d) is acyclic. But this is the kernel of the algebra map

(E (
∞⊕

i=0
Vi ),d) →V0 = H∗(A)

so, by the long exact sequence in cohomology, we conclude that this map is an isomorphism,
and so A is formal.
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CHAPTER 4

A p-adic de Rham complex

Abstract

This is the second in the sequence of three chapters exploring the relationship between
commutative algebras and E∞-algebras in characteristic p and mixed characteristic. Given a
topological space X , we construct, in a manner analogous to Sullivan’s APL-functor, a strictly
commutative algebra over Ẑp which we call the de Rham forms on X . We show this complex
computes the singular cohomology ring of X . We prove that it is quasi-isomorphic as an
E∞-algebra to the Berthelot-Ogus-Deligne décalage of the singular cochains complex with
respect to the p-adic filtration. We show that it can be modified slightly to provide a "best
strictly commutative approximation" to the singular cochains complex. We show that one
can extract concrete invariants from our model, including Massey products which live in the
torsion part of the cohomology. We show that if X is formal then, except at possibly finitely
many primes, the p-adic de Rham forms on X are also formal.

4.1 Introduction

Since its introduction by Quillen [75] and Sullivan [84], rational homotopy theory has prob-
ably become the single most successful subfield of algebraic topology. One of the main
observations of [84], which was completely fleshed out by [17], was that it was possible to
completely capture the rational homotopy theory of spaces via a strictly commutative model
APL (X ), which behaves roughly like the de Rham cochains. This reduces the study of rational
topological spaces to that of commutative dg-algebras. This has led to some spectacular
practical advances; for example, the rational homotopy groups of spheres and many other
spaces are now completely understood.

In a tour de force, Mandell [58] showed that it was possible to go one step further, and
that the study of all nilpotent, finite type spaces integrally can be reduced to studying E∞-
algebras. In terms of computation, less mileage seems to have been got from this than
rationally; largely because E∞-algebras are usually very complicated objects, generated by
infinitely many n-ary operations, and which are not naturally amenable to being studied
computationally. We are unaware of any implementations of even simple procedures such
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as Groebner bases for general E∞-algebras. In contrast, the strictly commutative algebras
appearing in rational homotopy theory are, almost uniquely, suited to being studied via
computer algebraic approaches such as using GAP or Sage due to the fact they are generated by
a single binary operation displaying the simplest possible behaviour. Most of these techniques
are not available even one step up, when working with cup-1-algebras - algebras that are
commutative up to strictly commutative homotopy [29, Definition 4.18].

The goal of this chapter is therefore to provide strictly commutative models for spaces
over the p-adic numbers Ẑp . The central problem is that it is not possible to capture all of
the information about the homotopy type of the spaces this way. This because the Steenrod
operations act as obstructions to strict commutivity. In particular, we have that the zeroth
Steenrod power operation P 0 never vanishes on E∞-algebras with the homotopy type of
spaces. Therefore, we can only hope to study approximations that carry some of this informa-
tion. There are multiple possible approaches. Mandell [59] has suggested for n-connected
spaces X at most primes, it may be possible to truncate the E∞-structure on C∗ (

X , Ẑp
)

to
an En-structure and find a strictly commutative model for this truncation. While we think
this is a interesting point of view and worthy of further study, in this chapter we have opted
for a more universal approach; we explain how to construct an explicit strictly commutative
algebra representing the homotopy right adjoint to the inclusion of commutative algebras
into E∞-algebras. We further explain which well-known invariants may be extracted from it.

In this chapter, we study a generalisation of Sullivan’s approach to homotopy theory. Recall
that this involves defining a cochain algebra, that is a functor

APL : △→CDGA

which extends to
APL : sSet→CDGA

by the universal property of simplicial sets. We shall recall this in more detail later, but for
now it suffices to recall that

APL
(
∆n)= Q (t0, ..., tn ,d t0, ...,d tn)

(
∑

ti −1,
∑

d ti )

The problem with doing this in positive characteristic is that Sym is not a homotopy invariant
functor. In 1979, Cartan [19] generalised the work of Sullivan [84] to a slightly more general
framework. In particular, Example 4 from that chapter uses divided power algebras

Gr
(
∆n)= Z〈s〉〈t0, ..., tn ,d t0, ...,d tn〉

(
∑

ti − s,
∑

d ti 〉
where 〈−〉 denotes the free divided power algebra. Cartan computes the cohomology of the
extension to sSet and proves that a subring of the cohomology is isomorphic to the singular
cohomology ring of X .

We, initially independently, had the same idea of modifying Sullivan’s construction using
divided power algebras. However, instead of working with Z〈s〉, we found it more convenient
to localise at a fixed prime p and work over Ẑp , with p itself playing the role of s. This way,
we are able to extract the singular cohomology ring of C∗ (

X , Ẑp
)

itself from the construction,
which we call the Ẑp -de Rham forms on X .

Theorem 4.1.1. Let X be a simplicial set. The cohomology ring of the p-adic de Rham com-
plex Ω∗ (X ) is isomorphic to the singular cohomology of X . In other words, one has a ring
isomorphism

H∗ (
Ω∗ (X )

)∼= H∗ (
X , Ẑp

)
.
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After computing the cohomology ring, from a modern perspective, the natural next step
is interpret the higher information contained the Ẑp -de Rham forms. To that end, we show
(Theorem 4.3.18) that our construction, as an E∞-algebra, is equivalent to the following
subalgebra of the singular cochains. In this sense, our work is the logical continuation of that
by Cartan and sheds new light on many of the constructions of [19].

Definition 4.1.2. Let X be a simplicial set. We define the p-shifted singular cochain algebra
D∗ (

X , Ẑp
)

to be the following subalgebra of the singular cochains C∗ (
X , Ẑp

)
.

Dn (X ) =
〈

p iσ : for σ ∈C n (
X , Ẑp

)
and

{
i = n if dσ= 0.

i = n +1 otherwise.

〉

The differential and the E∞-structure are that induced by those on C∗ (
X , Ẑp

)
.

This also reveals an unexpected connection with the theory of crystalline cohomology for
schemes. The same object as above can be viewed as ηp

(
C∗ (

X , Ẑp
))

, where η is the Berthelot-
Ogus-Deligne [9, 22] décalage functor, which is defined as the connective cover with respect to
the Beilinson t-structure on filtered complexes. In our case we we are working in complexes
over Ẑp with the p-adic filtration. In Cartan’s case, he was working in complexes over Z〈s〉
with the filtration generated by the ideal (s). In particular, this ties in with the work of Bhatt-
Lurie-Mathew [10, Thereom 7.4.7, Example 7.6.7], which states that, in the ∞-categorical
context, the fixed points of the left derived functor Lηp of ηp acting on the derived category
of p-complete dg-Ẑp -modules is equivalent to a 1-category. The de Rham forms appearing
in our and Cartan’s work can therefore be seen supplying a convenient strictly commutative
model for this rectification when working with spaces.

Theorem 4.3.18 also has some immediate applications. It means that the Ẑp -de Rham
forms can be used to compute Massey products up to a factor, including in the torsion part of
the cohomology, which has proven useful, in, for example, [41] for specific classes of spaces.
We conclude with a result on formality which was inspired by a conjecture of Mandell’s [59].

Theorem 4.1.3. Let X be a finite simplicial set such that APL (X ) is formal overQ. For all but
finitely many primes, Ω∗ (X ) is formal over Ẑp as a dg-commutative dg-algebra.

Structure of the chapter

This chapter has the following structure. First we recall some preliminaries on rational
homotopy theory, divided power algebras and E∞-algebras. Then in part 3, we define the
de Rham forms, compute ther cohomology and relate them to a subalgebra of the singular
cochains complex. In part 4, we construct a related complex that acts as the best strictly
commutative approximation to the cochain complex. Finally, in the last part, we examine
the homotopy invariants that can be extracted from the p-adic de Rham forms and prove a
formality theorem.

Notation and conventions

In this chapter, we work on the category of unbounded cochain complexes over some base
field or ring with cohomological convention. That is, the differential d : A∗ → A∗+1 of a
cochain complex (A,d)is of degree 1. The degree of a homogeneous element x is denoted
by |x|. The symmetric group on n elements is denoted Sn . We follow the Koszul sign rule.
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That is, the symmetry isomorphism U ⊗V
∼=−→V ⊗U that identifies two graded vector spaces is

given on homogeneous elements by u ⊗ v 7→ (−1)|u||v | v ⊗u. Algebras over operads are always
differential graded (dg) and cohomological. We will frequently omit the adjective "dg" and
assume it is implicitly understood. The ring of p-adic numbers is denoted Ẑp . The functor of
p-adic de Rham forms Ω (−) generally depends on a prime p, but to avoid needing to specify
this each time, we shall assume that p is fixed.

This is a short chapter and we do not intend to load it excessively with recollections; so
therefore we refer to [56] for the definition of an operad and other basic notions.

4.2 Preliminaries

In this part, we shall discuss the basic preliminaries. First, we shall discuss E∞-algebras
and why they model spaces. Next, we shall review the basic ideas from rational homotopy
theory that we shall need. Then, we shall discuss the different notions of algebra in mixed
characteristic and define divided power algebras. Finally, we shall define the homotopy
categories of commutative and E∞-algebras. This last section contains some non-standard
material, and is likely the only section the expert reader needs to read.

4.2.1 E∞-algebras and spaces

Recall the notion of an E∞-algebra from Section 3.2.2. In practice, the main reason why the
Barratt-Eccles operad is useful is that the cochain complex of a space X is an algebra over it
(with integral coefficients).

Theorem 4.2.1. [6] For any simplicial set X , we have evaluation products E (r )⊗C∗ (X )⊗r →
C∗ (X ) which are functorial in X which give the cochain complex C∗ (X ) the structure of an
algebra over the Barratt-Eccles operad E . In particular, the classical cup-product of cochains is
an operation µ0 : C∗ (X )⊗2 →C∗ (X ) associated to an element µ0 ∈ E (2)0 .

While not explicitly stated in that chapter, it is a straightforward to observe that the E -
algebra structure on C∗ (X ) constructed in [6] is stable. This means the following. Recall that
Barratt-Eccles operad admits the Smith filtration (for the precise definition see [5, 80]).

Ass = E (1) ,→ E (2) ,→··· ,→ E

An E -algebra A is stable if for all γ ∈ E () and x1 ⊗ ·· · ⊗ xr ∈ A⊗r the following condition is
satisfied. Suppose that min{|x1|, |x2|, . . . , |xr |} = k. Then if p

(
γ
)= 0 where p is the projection

p : E → E (k) then γ(x1 ⊗·· ·⊗xr ). = 0. In other words, the only part of the E -algebra structure
that does not vanish on elements of degree n is the En-part.

4.2.2 Rational homotopy theory

In this section, we review the rational case and explain the connection between E∞ algebras,
rational topological spaces and strictly commutative. We begin by explaining the construc-
tions Sullivan’s APL functor, which will be our basis for later constructing the p-adic de Rham
form functor Ω. In particular, in Proposition 4.2.2 we shall explain why Sullivan’s approach
does not work in positive characteristic. Next, we explain the equivalence in approach with
that of singular cochains. Next, we shall discuss the rectification of E∞-algebras with rational
coefficients. Finally, we conclude by explaining Cartan’s approach to cochain algebras.
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4.2.2.1 Sullivan’s approach to rational homotopy theory

In this section, we briefly revise Sullivan’s approach to homotopy theory [84]. In general, if
R is a commutative ring, we call any functor sSet→ CDGAR a cochain algebra. Recall that
the Sullivan’s PL-forms functor APL : sSet→CDGAQ, also called the rational de Rham forms
functor, is explicitly defined by taking simplicial set maps against the cochain algebra A∗• ,

APL (X ) = sSet (X , A•) ,

where

An = APL
(
∆n)= Sym(t0, ..., tn ,d t0, ...,d tn)

(
∑

ti −1,
∑

d ti )
∼= Sym(t1, ..., tn ,d t1, ...,d tn) .

Here, each ti is of degree 0, and d ti is a degree 1 generator identified with d (ti ) by abuse of no-
tation. See [14, 84]. The object sSet

(
X , A∗•

)
is a commutative dg-algebra where sSet

(
X , A∗•

)
k =

HomsSet

(
X ,Ωk•

)
and the differential is induced by the differential Ωk• →Ωk+1• . The algebras

Ωn are, in a very precise sense, the polynomial differential forms with rational coefficients on
the n-simplex, and gather into a simplicial object Ω• in the category CDGAQ.

In the case of APL , cochain algebras satisfy two additional key properties. First is the
Poincaré Lemma, which asserts that

H̃∗ (An ;Q) = 0.

Second is extendablity ; which asserts that the restriction map APL (X ) → APL (Y ) is surjective
for every inclusion of simplicial sets Y ⊆ X . Although the polynomial forms exist over any
base ring R, it is essential thatQ⊆ R for the Poincaré lemma to hold. To prove this, one can
observe that

APL
(
∆n)∼= (

Q[t ]⊗Sym(d t )
)⊗n ,

then give an explicit contraction K :Q[t ]⊗Sym(d t )
≃−→Q, given by geometric integration, and

extend it (non-canonically) as a contraction from the n-fold tensor product toQ. Although
there are choices for this extension, there is a choice given by geometric integration which is
quite natural. For example, the explicit formulas for ∆2 can be taken to be

K
(
t n

j d t j

)
= 1

n +1
t n+1

j , j = 1,2,

K
(
t n

1 t m
2 d t1d t2

)= 1

2

(
1

n +1
t n+1

1 t m
2 d t2 + 1

m +1
t n

1 t m+1
2 d t1

)
.

Here, we see the fundamental role played by division by n. In positive characteristic, this is
impossible to achieve. That is, if we consider the functor Ap

PL : sSet→CDGAFp , constructed in
the the same manner as APL but with Fp -coefficents, then for every prime p, the cohomology
algebra H̃∗ (

An ;Fp
)

is non-trivial, see Proposition 4.2.2 for the precise computation which we
learned from José Moreno-Fernández.

Proposition 4.2.2. The cohomology of Ap
PL (∆n) with F2-coefficients is in bijection with the

tuples (
α1, ...,αn ,β1, ...,βn

) ∈Zn
≥0 × {0,1}n

satisfying

αi even =⇒ βi = 0, and αi odd =⇒ βi = 1.

For a fixed tuple as above, its cocyle representative is explictly given by

tα1
1 · · · tαn

n (d t1)β1 · · · (d tn)βn .
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Proof. First, we compute the cohomology with F2-coefficients of APL
(
∆1

)
. Identify APL

(
∆1

)=
S (t ,d t ). Applying Leibniz’s rule inductively, we find that

d
(
t k

)
= kt k−1d t for allk.

Therefore, the non-trivial cocyles of APL
(
∆1

)
are all the even powers t 2k in degree 0 and all the

elements of the form t 2k+1d t for k ≥ 0 in degree 1. By inspection, these cohomology classes
are all distinct. Thus,

H n (
APL

(
∆1) ;F2

)={[
t 2k

] ∀ k ≥ 0 in degree 0,[
t 2k+1d t

] ∀ k ≥ 0 in degree 1.

It is well-known that Ap
PL (∆n) ∼= Ap

PL

(
∆1

)⊗n
, with the following identifications for all i = 1, ...,n:

ti = 1⊗·· ·⊗ t︸︷︷︸
i

⊗·· ·⊗1, and d ti = 1⊗·· ·⊗ d t︸︷︷︸
i

⊗·· ·⊗1.

Since we are working over a field, the Künneth map is an isomorphism, so that

H∗ (
Ap

PL

(
∆n))∼= H∗

(
Ap

PL

(
∆1)⊗n

)∼= H∗ (
Ap

PL

(
∆1))⊗n

.

A straightforward computation gives the cohomology classes mentioned in the statement.

4.2.2.2 Comparison between de Rham forms and singular cochains

We next explain the comparison between the APL functor and the singular cochains C∗ (−,Q)
functor. The material in this section is essentially due to Sullivan [84], Bousfield-Gugenheim
[14] and Mandell [58]. Recall that C∗ (△∗,Q) is a simplicial E -algebra, with the E -algebra
structure given by Theorem 4.2.1.

Definition 4.2.3. Let A∗ and B∗ be simplicial E -algebras. The tensor product (A⊗B)∗ is given
by

(A⊗B)k (△n)= ⊕
i+ j=k

Ai (△n)⊗B j (△n)
This object is equipped with the obvious face and degeneracy maps. The E -algebra structure
on (A⊗B)∗ (△n) is induced from the diagonal on E in the obvious way.

Proposition 4.2.4. [84] Suppose that A∗ and B∗ are extendable cochain algebras that both
satisfy the Poincaré lemma. Then (A⊗B)∗ also satisfies the Poincaré lemma and is extendable.
In particular,

H∗ (A⊗B) (X ) = H∗ (X )

Now one has the following zig-zag of simplicial E -algebras.

A∗
PL

(△∗) id⊗1−−−→ (
APL ⊗C∗)(△∗) 1⊗id←−−−C∗ (△∗)

(4.1)

For all X ∈ sSet, this extends to a zig-zag of E -algebras by the universal property of simplicial
sets

A∗
PL (X )

∼−→ (APL ⊗C )∗ (X )
∼←−C∗ (X )

and by Proposition 4.2.4, these maps are quasi-isomorphisms.
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4.2.2.3 Rectification

There is a weak equivalence of operads φ : E
∼−→ Com, so it is natural to ask whether or not

the pair
(
φ∗,φ!

)
forms a Quillen equivalence between E -algebras and Com-algebras. If there

is, then rectification is said to occur. With coefficients in Q, this is indeed the case; see for
example [88]. In particular, this implies that, in zero characteristic, that every E -algebra A has
a strictly commutative model given by φ! (A) .

4.2.2.4 Cartan’s approach to cochain algebras

Outside of characteristic zero, it appears to be very difficult to find commutative cochain
algebras that both satisfy the Poincaré Lemma and which are extendable. In [19], Cartan
extended Sullivan’s approach to more general cochain algebras. In particular, he proved the
the following generalisation of Theorem 4.2.4.

Theorem 4.2.5. [19] Let R be a commutative ring, X be a simplicial set and A∗• be a simplicial
cochain R-algebra. Let the simplicial cochain R-algebra Z k A be given by the kernel of the
differential d : Ak → Ak+1. Suppose further thatπi

(
Ak

)
andπi

(
Z k A

)
are zero when i ̸= k. Then

one has a natural isomorphism H k (A (X )) ∼= H k
(
X ,πk

(
Z k A

))
. Moreover this isomorphism is

multiplicative when the Z k A are flat R-modules.

4.2.3 A closer look at divided power algebras

Recall the notion of divided power algebras from Section 3.2.1. We shall mainly be interested in
the case P =Com, so it will be useful to be more explicit in this case. Let R be a commutative
unital ring. The cofree conilpotent coalgebra on a graded projective R-module V , also called
tensor coalgebra on V , is the graded R-module

T V = ⊕
k≥0

T kV , (4.2)

where T kV =V ⊗k for all k, endowed with the deconcatenation coproduct,

∆[v1| · · · |vn] =
n∑

i=0
[v1| · · · |vi ]⊗ [vi+1| · · · |vn].

A basis tensor of T V is therefore denoted [v1| · · · |vn] rather than v1 ⊗·· ·⊗ vn . The direct sum
decomposition in (4.2) is called the word-length decomposition of T V , and elements in T kV
are said to be of word-length k. The tensor coalgebra can be endowed with the associative
and commutative shuffle product ⊛,

explicitly given by

[v1| · · · |vp ]⊛ [vp+1| · · · |vn] = ∑
σ∈S(p,q)

ε (σ) vσ−1(1) ⊗·· ·⊗ vσ−1(n).

Here, S
(
p, q

)
is the set of

(
p, q

)
-shuffles, given by those permutations of p +q elements such

that
σ (1) < ·· · <σ(

p
)

and σ
(
p +1

)< ·· · <σ(
p +q

)
,

while ε (σ) stands for the Koszul sign associated to the permutation σ. Endowed with the
deconcatenation coproduct and the shuffle product, T V is a commutative bialgebra.
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There is a natural action of the symmetric group Sn on the word-length n components of
T V , given by

σ · [v1| · · · |vn] = ε (σ) · [vσ−1(1)| · · · |vσ−1(n)].

For each n, one can form the submodule of Sn-invariants under this action, that is, the
submodule generated by those word-length n homogeneous elements x with σ · x = x for
all σ ∈ Sn . Denote by ΓnV this submodule of T nV . Summing over all n, we form a graded
submodule of T V ,

Γ (V ) =
⊕
n≥0

ΓnV.

The submodule ΓV happens to be a subalgebra of T V , and it is called the free commutative
divided powers algebra on V . It comes equipped with set-theoretical maps γk : ΓV → ΓV
determined by

γ0 (v) = 1 for all v ∈V2n ,

γn (v) = [v | · · · |v](n times if v is of even degree and n ≥ 1, and

γn (v) = 0 if v is of odd degree and n ≥ 2.

In particular, the following two identities are satisfied on homogeneous elements (the second
one only when u is of even degree):

γn (u + v) =
n∑

i=0
γi (u)γn−i (v) ,

γi (u)γ j (u) =
(

i + j

i

)
γi+ j (u) .

Intuitively, the element γn (u) is a replacement of the element un

n! whenever it does not make
sense to divide by n!.

Assume V is freely generated by the homogeneous elements {vi }. Then, an R-linear basis
of ΓV is explicitly given by elements of the form

γk1 (v1)γk2 (v2) · · ·γkr (vr )

for all r ≥ 0, ki ≥ 0, with ki ∈ {0,1} if |vi | = 1.

Example 4.2.6. Let t ≥ 1. A very useful example occurs when V is a free R-module R⊗t with
basis x1, . . . xt . In this case ΓV is usually called divided power polynomial algebra and denoted
R〈x1, . . . , xt 〉. Explicitly, we have that

R〈x1, . . . , xt 〉 := ⊕
n1,...,nt≥0

Rx[n1]
1 , . . . , x[nt ]

t

with multiplication is given by

x[n]
i x[m]

i = (n +m)!

n!m!
x[n+m]

i

We also set xi = x[1]
i . Note that 1 = x[0]

1 · · ·x[0]
t . There is an canonical R-algebra map R〈x1, . . . , xt 〉→

R sending x[n]
i to zero for n > 0. The kernel of this map is denoted R〈x1, . . . , xt 〉+
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Example 4.2.7. When R = Fp , as a commutative dg-algebras

Fp〈x〉 =
{
Fp [x1, x2, . . . ]/

(
xp

1 , xp
2 , . . .

)
with |xk | = k|x|, when |x| is even.

Fp [x]/
(
x2

)
otherwise.

Example 4.2.8. When R = Ẑp , the divided powers algebra Ẑp〈x1, . . . xt 〉 is a subalgebra of
usual polynomial algebraQp [x1, . . . xt ] via the injective map

Ẑp〈x1, . . . xt 〉 ,→Qp [x1, . . . xt ]

x[n]
i 7→ 1

n!
xn

i

4.2.4 The homotopy theory of E -algebras and commutative dg-algebras

In this subsection we shall discuss the existence of model structures on categories of P -
algebras and specialise to the cases of E -algebras. The key takeaway of this subsection is that,
in this chapter, we shall work with the external homotopy category of commutative algebras
instead of the naive (internal) one.

4.2.4.1 The case of E∞ algebras

One has the following general fact.

Theorem 4.2.9. [45] Let P be a S-split (or cofibrant) operad over a commutative ring R. Then
the category of P -algebras over R is a closed model category with quasi-isomorphisms as the
weak equivalences and surjective maps as fibrations.

The Barratt-Eccles operad is S-split. This immediately gives the model structure on E∞-
algebras over Ẑp .

Definition 4.2.10. The model category E−alg of E∞-algebras is the category of algebras over
the Barratt-Eccles operad, in dg-modules over Ẑp , equipped with the model structure of
Theorem 4.2.9. It has quasi-isomorphisms of chain complexes as weak equivalences and
surjective maps as fibrations.

4.2.4.2 The case of commutative dg-algebras

We have already mentioned that in characteristic 0, the homotopy theory of commutative dg-
algebras coincides with that of E -algebras. In positive characteristic the relationship is much
more complex. Commutative dg-algebras come with an obvious notion of weak equivalence,
that is, algebra maps that are quasi-isomorphisms of cochain complexes. Localising with
respect to these maps gives a well-defined homotopy category, which we call the internal
homotopy category. The main result of [30] shall show that this is the wrong homotopy category
to consider when working with spaces. Instead, we shall consider the external homotopy
category.

Definition 4.2.11. The external homotopy category of commutative algebras is defined by
taking the full subcategory of E−alg given by E -algebras that are quasi-isomorphic to strictly
commutative dg-algebras and localising it at quasi-isomorphisms of E -algebras.

The external homotopy category of commutative algebras is clearly a subcategory of the
homotopy category of E -algebras. It works well for forming constructions such as derived
mapping spaces.
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4.3 The de Rham forms over Ẑp

We saw in Proposition 4.2.2, that Sullivan’s APL functor fails to generalise to positive character-
istic. This problem can partially be solved by trading the free polynomial algebra appearing in
the definition for a free divided powers algebra. The resulting object, Ω∗ (X ), has the correct
cohomology but is not quasi-isomorphic to the singular cochains on X as an E -algebra. It
is however very closely related. We shall see in the next part that it enables us to define and
calculate Massey products in situations where this machinery was previously inconvenient,
for example, one has Massey products arising in the torsion part of the cohomology.

This section of the chapter is broken into four subsections. The first is devoted to defining
Ω∗ (X ). In the second, we compute the cohomology of this object. In the third, we explain
how it is related to the singular cochain algebra. Finally, in the fourth, we explain the universal
property defining it.

4.3.1 The algebra of p-adic de Rham forms

In this subsection, we introduce the key object of this chapter - a generalisation of Sullivan PL-
forms to the p-adic setting. We show that this generalisation satisfies the Poincaré lemma, but
not the extendable condition (as defined in Section 4.2.2.1). As mentioned in the introduction,
a similar object to Ω∗ (X ) appears in [19, Section 4].

Definition 4.3.1. The p-adic de Rham cohain algebra Ω∗• is a simplicial cochain algebra that
has for n-simplices

Ω∗
n =

(
Ẑp〈x0, . . . xn〉⊗Λ (d x0, . . . ,d xn)(
x0 +·· ·+xn −p,d x0 +·· ·d xn

))c

, |xi | = 0, |d xi | = 1.

Here, the (−)c indicates that we are taking the closure of this set under an formal interchange
of variables

xr 7→ p −
j∑

i=0
xki

d xr 7→ −
j∑

i=0
d xki

for all r and such that the xki are all distinct from each other and from xr .
The differential d :Ω∗

n →Ω∗+1
n is determined by the formula

d
(

f
)= n∑

i=0

∂ f

∂xi
d xi

for f ∈ Γp (x0, . . . , xn)/
(
x0 +·· ·+xn −p

)
and then extended by the Leibniz rule. The simplicial

structure is defined as follows

d n
i :Ω∗

n →Ω∗
n+1 : xk 7→


xk for k < i .

0 for k = i .

xk−1 for k > i .

and

sn
i :Ω∗

n →Ω∗
n−1 : xk 7→


xk for k < i .

xk +xk+1 for k = i .

xk+1 for k > i .
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Example 4.3.2. The 0-simplices Ω0• are given by

Ẑp〈x0〉⊗Λ (d x0)(
x0 −p,d x0

) = Ẑp [p,
p2

2
, . . .

pk

k !
, . . . ] = Ẑp

On the other hand, one has that

Ẑp〈x0〉⊗Λ (d x0)

(x0 −1,d x0)
= Ẑp [

1

p
,

1

2 ·p2 , . . .
1

k ! ·pk
, . . . ] = Q̂p .

This is why we must impose the condition that x0 + ·· · + xn = p and cannot imitate the
x0 +·· ·+xn = 1 condition from the definition of the algebra of piecewise polynomial forms.

The p-adic de Rham forms cochain complex have one of the two desirable properties of a
cochain algebra: they satisfy the Poincaré lemma.

Proposition 4.3.3. The simplicial cochain algebra Ω∗ satisfies the Poincaré lemma. In other
words:

H i (
Ω∗

n

)={
Ẑp if i = 0.

0 otherwise.

Proof. Observe that one has the following isomorphism of cochain algebras

Ẑp〈x0, . . . xn〉⊗Λ (d x0, . . . ,d xn) ∼= (
Ẑp〈x〉⊗Λ (d x)

)⊗n+1
.

Since Ẑp〈x〉⊗Λ (d x) is free as a Ẑp -module, we can apply the Künneth theorem to deduce

H∗ (
Ẑp〈x0, . . . xn〉⊗Λ (d x0, . . . ,d xn)

)= H∗ (
Ẑp〈x〉⊗Λ (d x)

)⊗n+1
.

So the problem reduces to computing H∗ (
Ẑp〈x〉⊗Λ (d x)

)
. The elements x[i−1]d x form a

linear base for the degree 1 part of this algebra. Further, one has d
(
x[i ]

) = x[i−1]d x. The
conclusion follows.

As in Section 4.2.2.1, we now Kan extend our cochain algebra along the inclusion △∗ →
sSet.

Definition 4.3.4. Let X be a simplicial set and let p be a fixed prime number.. The p-adic de
Rham forms on X is the commutative dg-algebra

Ω∗ (X ) = sSet
(
X ,Ω∗

•
)

.

where sSet (X ,Ω•)k = HomsSet

(
X ,Ωk•

)
and the differential is induced by the differential Ωk• →

Ωk+1• .

The main difficulty with this approach is that Ω∗• is not an extendable cochain algebra. In
subsection 4.3.2, we shall use Theorem 4.2.5 to resolve this problem.

Proposition 4.3.5. The cochain algebra Ω∗• is not extendable.

Proof. Recall that Ω∗ (△0
)

is Ẑp . It follows that Ω∗ (
∂△1

) = Ẑp ⊕ Ẑp . Consider the element(
1, p

) ∈Ω∗ (
∂△1

)
. It suffices to prove that there does not exist a polynomial f (x0, x1) ∈Ω∗ (△1

)
such that f

(
0, p

)= 1 and f
(
p,0

)= p.

Indeed, assume towards contradiction that such an f exists. Then, as p is not invertible in
Ẑp , f

(
0, p

)= 1 implies that f has a constant term which is not divisible by p. On the other
hand, f

(
p,0

)= p implies that the constant term of f is divisible by p. We have obtained the
desired contradiction. We can conclude that the map Ω∗ (△1

)→Ω∗ (
∂△1

)
is not surjective

and therefore that Ω∗• is not extendable.
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4.3.1.1 Some examples

To illustrate the definition of Ω∗ (X ), we compute some examples for specific topological
spaces X . First, we have the most trivial case.

Example 4.3.6. When X is a standard n-simplex, one has the de Rham forms Ω∗ (△n) =Ω∗
n ,

where Ω∗
n is the algebra defined in Definition 4.3.1.

Next, we compute the next simplest group of examples, the spheres of various dimension.

Example 4.3.7. For the usual simplicial model of S1 =△1/∂△1, one has the following: the
Ẑp -module Ω0

(
S1

)= (x0x1)⊕ Ẑp , where (x0x1) is the ideal generated by the monomial in

Ẑp〈x0, x1〉(
x0 +x1 −p

)
This can also be written, purely in terms of one variable as the ideal generated by x2

0 −px0. In
the classical computation by Sullivan, this ideal would have been generated by x2

0 −x0. The
Ẑp -module Ω1

(
S1

)
is

Ẑp〈x0, x1〉d x0 ⊕ Ẑp〈x0, x1〉d x1(
x0 +x1 −p,d x0 +d x1

) = Ẑp〈x0〉d x0.

One can easily compute the cohomology of Ω∗ (
S1

)
. One has H 0

(
Ω∗ (

S1
)) = Ẑp , which is

generated by 1. One therefore also has H 1
(
Ω∗ (

S1
))= Ẑp which is generated by d x0.

In general it follows that, for Sn =△n/∂△n , one has that

Ωi (
Sn)={

Ẑp〈x0, x1, · · ·xn−1〉d x0 ∧d x1 ∧·· ·∧d xn−1 for i = n.(
{xσ(0)xσ(1) . . . xσ(i )d xσ(i+1) ∧·· ·∧d xσ(n) :σ ∈Sn+1}

)
for i < n.

where Sn+1 acts on the set of indices {0,1, · · · ,n} by permutation and we replace xn with
p−x0+·· ·+xn−1 and d xn with −d x0+·· ·−d xn−1. One therefore recovers that H n (Ω∗ (Sn)) =
Ẑp which is generated by d x1 ∧·· ·∧d xn−1.

We conclude this section by computing an example with non-trivial torsion in its coho-
mology and therefore which would not have been possible to model in Sullivan’s framework.

Example 4.3.8. The space RP 2 has a simplicial model X with nondegenerate simplices given
by X2 = {U ,V }, X1 = {a,b,c} and X0 = {v, w}, with face maps as follows

δ0U = b, δ1U = a, δ2U = c, δ0V = a, δ1V = b, δ2V = c,

δ0a = w, δ1a = v, δ0b = w, δ1b = v, δ0c = v, δ1c = v

We therefore compute Ω∗(RP 2). One can easily verify that

Ω2 (
RP 2)= Ẑp〈x0, x1〉d x0 ∧d x1 ⊕ Ẑp〈y0, y1〉d y0 ∧d y1

Next, one wants to compute Ω1
(
RP 2

)
. Elements contained in this are clearly of the form

f =U0(x0, x1, x2)d x0 +U1(x0, x1, x2)d x0 +U2(x0, x1, x2)d x2+
V0(y0, y1, y2)d y0 +V1(y0, y1, y2)d y0 +V2(y0, y1, y2)d y2
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where Ui ,Vi ∈ Ẑp〈t0, t1, t2〉 and must satisfy relations coming from the simplicial structure of
X . Firstly δ0U = δ1V ,δ1U = δ0V and δ2U = δ2V. This implies that

U1(0, t , s) =V0(t ,0, s), U2(0, t , s) =V2(t ,0, s) V1(0, t , s) =U0(t ,0, s), V2(0, t , s) =U2(t ,0, s)

U0(t , s,0) =V0(t , s,0), U1(t , s,0) =V1(t , s,0)

Lastly, we have the bottom row of relations, which imply that

U0(s,0,0) =U1(0, s,0)

Similarly the elements of Ω0
(
RP 2

)
are of the form

f (x0, x1, x2)+ g (x0, x1, x2)

with f , g ∈ Ẑp〈t0, t1, t2〉 and where

f (0, s, t ) = g (s,0, t ), f (s,0, t ) = g (0, s, t ), f (s, t ,0) = g (s, t ,0)

and
f (s,0,0) = f (0, s,0).

4.3.2 The cohomology ofΩ∗ (X )

In this section, we compute the cohomology ring of Ω∗ (X ) and show that it coincides with
the usual cohomology ring of X . The main result is the following theorem.

Theorem 4.3.9. Let X be a simplicial set. The cohomology ring of Ω∗ (X ) is isomorphic to the
singular cohomology of X . In other words, one has a ring isomorphism

H∗ (
Ω∗ (X )

)∼= H∗ (
X , Ẑp

)
.

The arguments in this section are very similar to that in [19, Section 4]. The strategy is that
to apply Theorem 4.2.5. In order to do so, it is necessary to compute the homotopy groups
πi

(
Ωk

)
and πi

(
Ωk

)
.

Proposition 4.3.10. The homotopy groups of Ωk are as follows:

πi

(
Ωk

)
=

{
Z/pZ when i = k

0 otherwise.

with the generator of πi
(
Ωk

)
being d x0 ∧d x1 ∧·· ·∧d xk−1.

First, make the auxiliary definition.

Ω
∗
n =

(
Ẑp〈x0, . . . xn〉⊗Λ (d x0, . . . ,d xn)(

x0 +·· ·+xn −p
) )c

, |xi | = 0, |d xi | = 1.

Here, the (−)c indicates that we are taking the closure of this set under an formal interchange
of variables

xr 7→ p −
j∑

i=0
xki

for all r and such that the xki are all distinct from each other and from xr .

Let N∗(−) be the normalised chains functor. The homotopy groups πi

(
N∗

(
Ω

∗))
are as

follows.
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Lemma 4.3.11. The homotopy groups of N∗
(
Ω

∗)
are as follows:

πk

(
N∗

(
Ω

∗))
=

{
Z/pZ when k = 0

0 otherwise.

Proof. Suppose k > 0, then consider a k-cycle ω (x0, . . . xk ) ∈Ωk such that ∂iω= 0. We may
use the closure condition to rewrite ω (x0, . . . xk ) such that ∂iω= 0 in

Ẑp〈x0, . . . xn〉⊗Λ (d x0, . . . ,d xn)

It then follows that the (k +1)-chain ω (x1, . . . xk+1) is such that ∂0ω (x1, . . . xk+1) =ω (x0, . . . xk )
and ∂iω (x1, . . . xk+1) = 0 for i > 0.

When k = 0, the chains are
Ẑp [x0](
x0 −p

) .

But the image of the differential is the ideal generated by (x0). So therefore

π0

(
N∗

(
Ω

∗))
= Ẑp [x0](

x0, x0 −p
) =Z/pZ.

Proof of Proposition 4.3.10. Consider the ideal I∗n ofΩ
∗
n generated by d x0+·· ·+d xn . One has

the relation
Ω∗

n =Ω∗
n/I∗n .

Multiplication by d x0 +·· ·+d xn sends Ω
i
n to Ω

i+1
n . Observe that the kernel of this map is I i

n .
One therefore has an exact sequence of simplical Ẑp -modules

0 → I i →Ω
i → I i+1 → 0

We therefore have that Ωi is isomorphic to I i+1. One has I 0 = 0, and therefore by induction,
one finds that πi

(
Ωk

) = 0 when i ̸= k and πk
(
Ωk

) = Z/pZ with the generator being d x0 ∧
d x1 ∧·· ·∧d xk−1.

Now, since d ◦d = 0, one has a short exact sequence

0 → Z kΩ→Ωk → Z k+1Ω→ 0.

where the first map is the inclusion and the last map is surjective because Ω satisfies the
Poincaré Lemma.

Again one can consider the long exact sequence in homotopy. First, one observes that
πi

(
Z kΩ

)= 0 when i ̸= k,k −1 and therefore one has an exact sequence

0 →πk

(
Z kΩ

)
→πk−1

(
Z k−1D

)
→πk−1

(
Ωk−1

)
→πk−1

(
Z kΩ

)
→ 0.

This identifies πk
(
Z kΩ

)
as a subgroup of πk−1

(
Z k−1Ω

)
. A routine computation shows that

π0
(
Z 0D

) = Ẑp ; and then one can show by induction that πk−1
(
Z k−1D

) → πk−1
(
Ωk−1

)
is

surjective, so it follows that πk−1
(
Z kΩ

)= 0. The induction therefore gives that

πk

(
Z kΩ

)
= pk Ẑp .

Finally, we observe that there is an isomorphism H k
(
X , pk Ẑp

)= H k
(
X , Ẑp

)
. We phrase the

all of the above as a proposition.
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Proposition 4.3.12. The cohomology ring of Ω∗ (X ) is isomorphic to the singular cohomology
of X . In other words, one has a ring isomorphism

H∗ (
Ω∗ (X )

)= H∗ (
X , Ẑp

)
.

Proof. The computation above gives that

πk

(
Z kΩ

)
= pk Ẑp .

It therefore follows from Theorem 4.2.5 that H∗ (Ω∗ (X )) = H∗ (
X , Ẑp

)
. The Z kΩ are submod-

ules of the torsion-free Ẑp -modules Ωk . Therefore they are torsion-free modules over a PID
and so are flat. It therefore follows from Theorem 4.2.5 that the cohomology ring is as in the
statement.

Remark 4.3.13. As in the rational case, one can check that there is a zig-zag of E -algebras.

Ω∗ (X )
i−→ (C ⊗Ω)∗ (X )

j←−C∗ (X ) .

which is induced by left Kan extending the zig-zig

Ω∗ (△∗) 1⊗id−−−→ (C ⊗Ω)∗
(△∗) id⊗1←−−−C∗ (△∗)

.

along △∗ → sSet. However, these maps do not descend to isomorphisms on cohomology.
In fact, one can verify that for X = S1, the map H 1 (1⊗ id) is multiplication by p. In the next
subsection, we shall discuss how one can remedy this.

4.3.3 The relationship between the p-adic de Rham forms and the
algebra of singular cochains

In this subsection, we upgrade the result of the previous section by explaining how to interpret
Ω∗ (X ) as an E -algebra. Given the nonvanishing of the Steenrod operation P 0, it has no chance
of generally being weakly equivalent to the singular cochains on X . However we shall show in
this section that it is quasi-isomorphic to the following subalgebra of C∗ (

X , Ẑp
)
. First, it is

necessary to establish some notation.

4.3.3.1 The p-shifted singular cochains

In this subsubsection, we shall define the p-shifted singular cochains algebras.

Definition 4.3.14. Let X be a simplicial set. We define the p-shifted singular cochain algebra
D∗ (

X , Ẑp
)

to be the following subalgebra of the singular cochains C∗ (
X , Ẑp

)
.

Dn (X ) =
〈

p iσ : for σ ∈C n (
X , Ẑp

)
and

{
i = n if dσ= 0.

i = n +1 otherwise.

〉

The differential and the E structure are that induced by those on C∗ (
X , Ẑp

)
.

Remark 4.3.15. Since the singular cochains C∗ (
X , Ẑp

)
are a free graded Ẑp -module, recall

that it splits (non-canonically) as a sum of graded submodules C∗ (
X , Ẑp

)= B∗ (
X , Ẑp

)⊕
Z∗ (

X , Ẑp
)
,

where Z∗ (
X , Ẑp

)
are the cocycles and B∗ (

X , Ẑp
)

is a choice of complement. Then C ∗ (X ) can
be written

pB 0 (
X , Ẑp

)⊕Z 0 (
X , Ẑp

)→ p2B 1 (
X , Ẑp

)⊕p Z 1 (
X , Ẑp

)→···
This equips C ∗ (X ) with a splitting that is also non-canonical.
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We quickly verify the basic properties of C ∗ (X ); namely that C ∗ (X ) is indeed a sub-E -
algebra and we compute its cohomology.

Proposition 4.3.16. Let X be a simplicial set, then p-shifted singular cochain algebra C ∗ (X )
is a sub-E -algebra of C∗ (

X , Ẑp
)

and has cohomology given by H∗ (
X , Ẑp

)
.

Proof. The first claim follows from the fact that for every operation µ ∈ E (r )k , the oper-
ation µ is linear in each variable. In particular, if xi ∈ D (X )r1 then xi = pr1 x ′

i . Therefore

µ (x1, x2, · · ·xn) = µ
(
pr1 x ′

1, pr2 x ′
2, · · ·prn x ′

n

) = pr1+···+rnµ(x1, x2, · · ·xn) ∈ D(X )r1+···rn−k . The co-
homology of C ∗ (X ) can be directly computed as

pn Z n
(
X , Ẑp

)
d

(
pnB n−1

(
X , Ẑp

)) = H∗ (
X , pnẐp

)= H∗ (
X , Ẑp

)
.

The lemma follows.

Remark 4.3.17. The underlying cochain complex of the p-shifted singular cochains complex
functor can be viewed as ηp

(
C∗ (

X , Ẑp
))

, where η is the the Berthelot-Ogus-Deligne [9, 22]
décalage functor. This is the connective cover with respect to the Beilinson t-structure on
filtered complexes. In this case, we are considering the filtration given by powers of the ideal
(p). In this context, Theorem 4.3.18 of this chapter can be compared with Theorem 7.4.7
and Example 7.6.7 of [10], which suggest that these objects should have strictly commutative
models.

4.3.3.2 The equivalence

Now, we are ready to compute the homotopy type of Ω∗(X ).

Theorem 4.3.18. For every simplicial set X , there exists a cochain algebra V ∗ such that there is
a zig-zag of quasi-isomorphisms of E -algebras

Ω∗ (X ) V ⊗Ω∗ (X ) D∗ (
X , Ẑp

)f g

Remark 4.3.19. The same arguments go through for the complex Gr(X ) of [19] if one adjusts
the definitions of D∗ and of V ∗ appropriately with respect to the (s)-adic filtration.

The tensor product appearing in the statement is that of Definition 4.2.3. The proof
strategy is to construct a zig-zag similar to that of (4.1). First, we define V ∗.

Definition 4.3.20. Let X be a simplicial set. We define the V ∗ (X ) to be the following subalge-
bra of the singular cochains C∗ (

X , Ẑp
)
.

V n (X ) =
〈

p iσ : for σ ∈C n (
X , Ẑp

)
and

{
i = 1 if n > 0 or dσ ̸= 0.

i = 0 if n = 0 and dσ= 0

〉

The differential and the E structure are that induced by those on C∗ (
X , Ẑp

)
.

Remark 4.3.21. Using the notation from Remark 4.3.15, V ∗ (X ) can also be written as

Z 0 (
X , Ẑp

)⊕pB 1 (
X , Ẑp

)→ pC 1 (
X , Ẑp

)→ pC 2 (
X , Ẑp

)→···pC i (
X , Ẑp

)→···
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This cochain algebra will reappear later, when we discuss the best commutative approxi-
mation to the singular cochains. Next, we compute the cohomology of V ⊗Ω (X ).

Proposition 4.3.22. The cohomology of V ⊗Ω (X ) is H∗ (
X , Ẑp

)
.

Proof. The strategy is to compute both πi
(
(V ⊗Ω)k)

and πi
(
Z k (V ⊗Ω∗)

)
, and then the result

will follow by an immediate application of Theorem 4.2.5. The first step is observe that one
has

πr

(
N∗

(
V k

))
=

{
Fp when i = 0.

0 otherwise.

where π0
(
V 0

)
is generated by 1. The cohomology of N∗

(
(V ⊗Ω)k•

)
can then be directly com-

puted using the Kunneth theorem. In particular one has the following short exact sequence⊕
i+ j=k

⊕
p+q=r

πp

(
V i

)
⊗πq

(
Ω j

)
→πr

(
(V ⊗Ω)k

•
)
→ ⊕

i+ j=k

⊕
p+q=r−1

Tor1

(
πp

(
V i

)
,πq

(
Ω j

))
First observe that πp

(
V i

)= 0 except when p = 0 and πq
(
Ω j

)= 0 except when q = j . We can
therefore deduce that ⊕

i+ j=k

⊕
p+q=r−1

Tor1

(
πp

(
V i

)
,πq

(
Ω j

))
= 0

We conclude that

πi

(
(V ⊗Ω)k

)
=

{
Fp when i = k

0 otherwise.

Now one has a short exact sequence

0 → Z k (V ⊗Ω) → (V ⊗Ω)k → Z k+1 (V ⊗Ω) → 0.

Again one can consider the long exact sequence in homotopy. First, one observes that
πi

(
Z k (V ⊗Ω)

)= 0 when i ̸= k,k −1 and therefore one has an exact sequence

0 →πk

(
Z k (V ⊗Ω)

)
→πk−1

(
Z k−1 (V ⊗Ω)

)
→πk−1

(
(V ⊗Ω)k−1

)
→πk−1

(
Z k (V ⊗Ω)

)
→ 0.

This identifies πk
(
Z k (V ⊗Ω)

)
as a subgroup of πk−1

(
Z k−1 (V ⊗Ω)

)
. Since π0

(
Z 0 (V ⊗Ω)

) =
Ẑp and one can show by induction that πk−1

(
Z k−1 (V ⊗Ω)

)→πk−1
(
(V ⊗Ω)k−1) is surjective,

it follows that πk−1
(
Z k (V ⊗Ω)

)= 0. The induction therefore gives that

πk

(
Z k (V ⊗Ω)

)
= pk Ẑp .

Therefore, since Z k (V ⊗Ω) is free, by Theorem 4.2.5, we have that H i (V ⊗Ω (X )) = H i
(
X , p i Ẑp

)=
H i

(
X , Ẑp

)
as desired.

We can now prove our main theorem.

Proof of Theorem 4.3.18. Observe that there is an obvious inclusion i : C ∗ (△n) → V ∗(△n)
induces a map of E -algebras

fn : C ∗ (△n)→ (V ⊗Ω)∗
(△n)

x 7→ i (x)⊗1
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and, we also have a homotopy equivalence

gn :Ω∗ (△n)→ (V ⊗Ω)∗
(△n)

x 7→ 1⊗x

These maps are both compatible with the simplicial structure on the cochain algebras. For all
X ∈ sSet, this extends to a zig-zag of E -algebras by the universal property of simplicial sets

C ∗ (X )
f−→ (V ⊗Ω)∗ (X )

g←−Ω∗ (X ) .

and by Proposition 4.3.22, these maps are quasi-isomorphisms.

4.3.4 The En-truncation of the singular cochains

In this section, we explain, given a space X , how one can compute an En-algebra Bn (X ) that
is quasi-isomorphic to the singular chains as an En-algebra and which has better cofibrancy
properties than the singular chains.

Definition 4.3.23. We define a simplicial cochain algebra
(
B(r )

)∗
that has for n-simplices

(B(r ))∗n = E (r ) (x0, . . . xn ,d x0, . . . ,d xn)

(x0 +·· ·+xn −1,d x0 +·· ·+d xn)
, |xi | = 0, |d xi | = 1.

As an Er -algebra, this contains enough information to approximate C∗ (X ) .

Theorem 4.3.24. Let X be a simplicial set. Then there is a zig-zag of equivalences of E (r )-
algebras

C∗ (X )
∼−→ (

C ⊗B(r ))∗ (X )
∼←− (

B(r ))∗ (X )

The result will follow from the following lemma.

Lemma 4.3.25. The cochain algebra
(
B(r )

)∗
(X ) satisfies the Poincaré Lemma and is extend-

able.

Proof. Both claims follow from adaptions of classical arguments. To verify the Poincaré
Lemma, it suffices to observe that, as a cochain complex, one has(

B(r )
)

(x0, . . . xn ,d x0, . . . ,d xn)

(x0 +·· ·+xn −1,d x0 +·· ·+d xn)
= (

B(r )) (x1, . . . xn ,d x1, . . . ,d xn)

Finally, one has that H∗ ((
B(r )

)
(x1, . . . xn ,d x1, . . . ,d xn)

)= 0 because the cohomology of Fp x1⊕
. . .Fp xn ⊕Fp d x1 ⊕ ·· ·⊕Fp d xn is 0 and the free functor

(
E (r )

)
reflects weak equivalences of

cochain complexes.

To verify extendability, it suffices to check that the normalized chain complex N∗
((

B(r )
)p
•
)

has zero homology for every p. Letω ∈ Nn
((

B(r )
)p
•
)

be an n-cycle. This means thatω ∈ (
B(r )

)p
n

is a p-cochain such that δi (ω) = 0 for all 0 ≤ i ≤ n. We need to show that ω is a boundary. In
other words, that there exists ν ∈ (

B(r )
)p

n+1 such that δi (ν) = 0 for 0 < i ≤ n and ∂0(ν) =ω. We
claim that

ν :=
n+1∑
j=1

t jω(t1, . . . , t j−1, t j + t0, t j+1, . . . , tn+1)

works for this. The verification is left to the reader.
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Proof of Theorem 4.3.24. The zig-zag(
B(r ))∗ (△∗) id⊗1−−−→ (

B(r ) ⊗C∗)(△∗) 1⊗id←−−−C∗ (△∗)
(4.3)

extends to a zig-zag of E (r )-algebras by the universal property of simplicial sets(
B(r ))∗ (X )

∼−→ (
B(r ) ⊗C

)∗
(X )

∼←−C∗ (X )

and, since
(
B(r )

)∗
is extendable and satisfies the Poincaré Lemma, it follows that by Proposi-

tion 4.2.4 that these maps are quasi-isomorphisms.

Conjecture 4.3.26 (Refinement of a conjecture of Mandell [59]). If X is n-connected, it
ought to be possible to find a strictly commutative algebra MX such that there is a surjective
map

(
B(r )

)∗
(X ) → MX . The object MX should just be symmetrisation of the associative

structure along with appropriate identifications of the cotriple maps from [29] determined
by En-structure. In favourable situations, where all obstructions vanish, this should be a
quasi-isomorphism.

4.4 Homotopy invariants

In this section we shall discuss some applications of the p-adic de Rham forms. First, we shall
show that they recover the Massey products. Recall that Massey products, first defined in [60],
are secondary operations defined on the homology of differential graded associative algebras.
They are a finer invariant than the cohomology ring. For example, they can be used to show
that the Borromean rings are non-trivially linked, which cannot be detected using only the
cohomological cup product. We shall also discuss the relationship betweenQ-formality and
Ẑp -formality.

4.4.1 Massey products inΩ∗ (X )

This section discuss the homotopical applications ofΩ∗ (X ). We shall show that that it allow us
to use the machinery of Massey products in situations where they were previously unavailable,
for example, in the torsion part of the cohomology of spaces. We finish this section by giving
an example of a space X that is formal overQ but not over Ẑp .

We begin by showing that all traditional Massey products in APL (X ) (that is to say, Massey
products in the sense of [60] that are defined overQ) may also be computed using Ω∗ (X ) .

Proposition 4.4.1. Suppose thatσ ∈ H∗ (X ,Q) be the higher Massey product of 〈x1, x2, . . . , xn〉 ∈
H∗ (APL (X ) ,Q). Then there exists an n > 0 such that pnσ ∈ H∗ (

X , Ẑp
)

is the higher Massey
product of 〈pn x1, pn x2, . . . , pn xn〉 ∈ H∗ (

APL (X ) , Ẑp
)

computed in Ω∗ (X ) .

Proof. Let {ai , j } be a defining system for a Massey product in APL (X ). The inclusion

Ẑp〈x〉→Qp [x]

induces an inclusion of Ẑp -modules

f :Ω∗ (X ) ,→ APL (X )⊗Qp .

given by

xi1 · · ·xin d x j1 ∧·· ·∧d x jm 7→ 1

pn+m yi1 · · · yin d y j1 ∧·· ·∧d y jm .

Now for a sufficiently large n, the defining system {pn ai , j } must lie in the image of f . Since f
is injective, it then can be pulled back to a defining system for pnσ on Ω∗ (X ) .
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One can generalise the notion of Massey products with the same definition but choosing
cochains representing the torsion part of the cohomology of a space. This has already been
done in some special cases. For an example with moment-angle complexes we refer the
reader to [41, Example 3.21]. We expect that our construction generalises this, up to factor,
and provides a convenient model for doing computations.

4.4.2 Formality ofΩ∗ (X )

Recall that a space X is calledQ-formal if APL (X ) is quasi-isomorphic to the cohomology of
X . We shall say that X is Ẑp -formal, if Ω∗ (X ) is quasi-isomorphic to H∗ (X ) via a zig-zag of
commutative dg-algebras. Formality is an extremely useful property in rational homotopy
theory, and we hope that Ẑp -formality may have similar applications in future.

The main theorem of this section is the following, which is inspired by a conjecture of
Mandell [59].

Theorem 4.4.2. Let X be a finite simplicial set such that APL (X ) is formal overQ. For all but
finitely many primes, Ω∗ (X ) is formal over Ẑp as a dg-commutative dg-algebra.

Before proving this theorem, it will be convenient to introduce some notation and prove a
useful lemma.

Definition 4.4.3. Let V and W be free dg-modules in Ẑp .We define the mixed symmet-
ric algebra MSym(V0,V1) to be the smallest free commutative dg-algebra containing both
Sym(V ⊕W ) and ΓSym(W ) .

Lemma 4.4.4. Let X be a simplicial set. Suppose that a cochain σ ∈Ω∗ (X ) is not a cocycle.
Then there exists a cocycle c such that (σ+ c)pn

is divisible by pn .

Proof. The noncocyles inΩ∗ (△n) are easily verified to be of the formσ+c for c = 1,2. . . , p−1 ∈
Ω0 (△n). For the general case, observe that

Ω∗ (X ) = sSet
(
X•,Ω∗ (△n))

.

The result holds for each x ∈ X• so the result must hold in the general case.

Proof of Theorem 4.4.2. Before beginning the proof we briefly summarise the idea behind the
proof. One constructs a quasi-free, and therefore cofibrant, replacement of APL (X ) in the
category of C DG AQ via the step-by-step procedure of [27, Proposition 12.1]. At each step one
constructs a quasi-free resolution of Ω (X ) with a map to the cofibrant resolution. Finally; if
APL (X ) is formal there is a weak–equivalence from the cofibrant resolution of APL (X ) to its
cohomology and one shows that this extends to a map on the quasi-free resolution ofΩ (X ) to
its cohomology.

For all but finitely many primes the cohomology H∗ (
X , Ẑp

)
is torsion-free and therefore

projective. Assume we are working at such a prime. In this case,

H∗ (
X , Ẑp

)⊗Ẑp
Qp = H∗ (

X ,Qp
)

Then, we recall that if APL (X ) is formal, then APL (X )⊗Qp is formal. Now, the inclusion

Ẑp〈x〉→Qp [x]

induces an isomorphism
Ẑp〈x〉⊗Ẑp

Qp
∼−→Qp [x].

158



and therefore one has a isomorphism

Ω∗ (X )⊗Ẑp
Qp = APL (X )⊗Qp .

given by

xi1 · · ·xin d x j1 ∧·· ·∧d x jm 7→ 1

pn+m yi1 · · · yin d y j1 ∧·· ·∧d y jm .

This isomorphism restricts to an inclusion of dg-Ẑp -modules

Ω∗ (X ) → APL (X )⊗Qp ,

which is clearly an quasi-isomorphism after tensoring byQp . We shall commence by showing
that one can build compatible Sullivan-type models for APL (X )⊗Qp and Ω∗ (X ) as com-
mutative dg-algebras. Since H∗ (

X , Ẑp
)

is free and therefore projective, one has a quasi-
isomorphism of dg-Ẑp -modules

H∗ (
X , Ẑp

)→Ω∗ (X ) .

One can then choose a map H∗ (
X ,Qp

) → APL (X )⊗Qp such that the following diagram
commutes.

H∗ (
X , Ẑp

)
Ω∗ (X )

H∗ (
X ,Qp

)
APL (X )⊗Qp .

H∗(X ,i )

Here, the map i : Ẑp →Qp is the usual inclusion of a ring into its field of fractions. Next, we
follow the next step of the classical procedure for building a Sullivan model by extending this
to a map of free commutative dg-Ẑp -algebras.

Sym
(
H∗ (

X , Ẑp
))

Ω∗ (X )

Sym
(
H∗ (

X ,Qp
))

APL (X )⊗Qp .

f0

g0

The reader should observe that ker H∗ (
f0

)⊗Qp = ker H∗ (
g0

)
since H∗ (

X , Ẑp
)

has zero differ-
ential. Moreover, these kernels are free since we are working over a PID. Therefore, any basis
of cocycles W1 for ker H∗ (

f0
)

is such that W1⊗Qp is a basis for ker H∗ (
g0

)
. Therefore one can

extend the differential to

d : V1 = sW1 →W1 ⊂ Sym
(
H∗ (

X , Ẑp
))

d : V1 ⊗Qp = sV1 ⊗Qp →W1 ⊗Qp ⊂ Sym
(
H∗ (

X ,Qp
))

that kill all surplus cocycles. Now, observe that the map

f1 : V1 →Ω∗ (X )

is defined to be any choice of map such that the following diagram commutes

V1

W1 Ω∗ (X ) .

f1
d

f0
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In particular, it follows from Lemma 4.4.4 that f1 can be chosen such that for all v ∈V1, we
have pn | f1 (v)pn

. Define g1 = f1 ⊗Qp . By freeness, we can produce a commutative diagram

(
Sym

(
H∗ (

X , Ẑp
)⊕V1

)
,Ω

)
Ω∗ (X )

(
Sym

(
H∗ (

X ,Qp
)⊕V1 ⊗Qp

)
,Ω

)
APL (X )⊗Qp .

f1

g1

This, so far, is precisely as in [27, Proposition 12.1]. Now, we claim that the map

f1 : Sym
(
H∗ (

X , Ẑp
)⊕V1

)→Ω∗ (X )

extends uniquely to (
MSym

(
H∗ (

X , Ẑp
)

,V1
))→Ω∗ (X ) .

The existence of such an extension is equivalent to showing that for all v ∈V1, the element(
f1 (v)

)pn

is divisible by pn . This is true since f1 (v) was chosen to satisfy the hypotheses of
Lemma 4.4.4. (

MSym
(
H∗ (

X , Ẑp
)

,V1
)

,d
)

Ω∗ (X )

(
Sym

(
H∗ (

X ,Qp
)⊕ (

V1 ⊗Qp
))

,d
)

APL (X )⊗Qp .

f1

g1

It is clear we can iterate this procedure provided that two conditions. Namely, we must show
that, if

• the cohomology of MSym
(
V0,

⊕k
i=1 Vi

)
is torsion-free.

• the map MSym
(
V0,

⊕k
i=1 Vi

) fk−→ Sym
(⊕k

i=0 Vi ⊗Qp
)

is aQp -quasi-isomorphism

for k = N −1, then the same pair of conditions hold for k = N . The first condition is clearly
true for our construction since, by assumption, the cohomology of Ω∗ (X ) is torsion-free. For
the second condition to hold, it suffices to observe that fN sends cocycles to cocycles because
the divided powers of the Vi for i ≥ 1 kill all surplus cocycles.

It therefore follows that the map(
MSym

(
V0,

∞⊕
i=1

Vi

)
,d

)
→

(
Sym

( ∞⊕
i=0

Vi ⊗Qp

)
,d

)

is a Qp -quasi-isomorphism. Since
(
Sym

(⊕∞
i=0 Vi ⊗Qp

)
,d

)
is cofibrant, there is a quasi-

isomorphism
(
Sym

(⊕∞
i=0 Vi ⊗Qp

)
,d

)→ H∗ (
X ,Qp

)
. This restricts to a quasi-isomorphism of

commutative dg-algebras (
MSym

(
V0,

∞⊕
i=1

Vi

)
,d

)
→ H∗ (

X , Ẑp
)

which implies Ω∗ (X ) is formal as desired.

160



CHAPTER 5

Homotopically, E∞- algebras do not generalise commutative algebras

Abstract

This is the third chapter exploring the relationship between commutative algebras and E∞-
algebras in characteristic p and mixed characteristic. In this chapter, we show that, in character-
istic 2, the homotopy category of strictly commutative dg-algebras does not form a subcategory
of the homotopy category of E∞-algebras. This is done by constructing a explicit example of two
strictly commutative algebras that are quasi-isomorphic in the category of E∞-algebras but not
the category of strictly commutative algebras. The construction is based on the theory of cotriple
operations.

5.1 Introduction

Clearly, the commutative algebra structure on a CDGA always extends to a full E∞-algebra
structure. In this sense, E∞-algebras generalise commutative algebras. One can also ask if the
same property holds on homotopical level. The categories of CDGAs and E∞-algebras both
have a natural notion of quasi-isomorphism and therefore homotopy categories. Therefore
commutative algebras have two notions of homotopy type, firstly, one can say A and B have the
same homotopy type if they are connected by zig-zags of quasi-isomorphisms of commutative
algebras; and secondly, one can consider if there are zigs-zags of quasi-isomorphisms of E∞-
algebras where the algebras appearing in the zig-zags can be both commutative algebras and
E∞-algebras.

At first glance, these two notions seem obviously equivalent and, indeed, in characteristic 0,
this is true. The purpose of this chapter is to show that this does not occur in positive characteristic
by exhibiting an explicit counterexample.

Cotriple products and versions of the Frobenius map can be defined for most algebraic
operads. We therefore expect the same basic method to produce similar counterexamples for
most other operads in positive characteristic.

We comment briefly on related work. In [42], the authors develop operadic calculus in positive
characteristic using quasi-planar operads as the backbone. This allows them to develop a general
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theory that allows them to study the homotopy category of algebras of all S-projective operads.
While their work does not claim such; our work shows that this is not a complete picture - there is
information, in this case about indeterminacies of higher operations, in the homotopy category
of algebras over an operad that cannot be recovered from the category of algebras over cofibrant
replacements of said operads.

5.2 Preliminaries

5.2.0.1 Linear bases for cup-1-algebras

Recall the notion of a strict cup-1-algebra from Section 3.4.2.1 and the following definition.

Definition 5.2.1. Let A = Cup(X )/(R) be cup-1-algebra presented in terms of generators and
relations. Let m be a monomial in A, constructed from the generators using both ∪1 and ∪. Then
m is reduced if it is written as

m = m1 ∪m2 ∪·· ·∪mn

where each mi is a monomial constructed only using the ∪1 operation.

Clearly, using the Hirch relation, every monomial can be written as the sum of reduced
monomials. However, the chief computational problem is that such a sum may not be unique.
Indeed, one has

a ∪ c ∪ (b ∪1 d)+ (a ∪1 c)∪b ∪d = a ∪ (b ∪1 d) = c ∪a ∪ (b ∪1 d)+ (a ∪1 c)∪d ∪b (5.1)

as both are different ways of expanding (a ∪b)∪1 (c ∪d) = (c ∪d)∪1 (a ∪b). In what follows, we
shall refer to any relation of this form as a Hirsch relation.

5.2.0.2 Recalling cotriple operations

For the full theory of cotriple products, we refer the reader to Section 3. For convenience, here we
briefly recall some essential preliminaries about higher Frobenius operations in characteristic 2.

Definition 5.2.2. Let A be a commutative dg-algebra over F2. Let x, y ∈ H∗(A) be homogeneous
elements such that x y = 0. A defining system for a nth order Frobenius product is a collection
{a,b,c1, . . .cn−1} such that a,b are choices of cocycle representatives for x, y , dc1 = ab and c2

i =
dci+1. The nth order Frobenius product is then c2

n .

There is a small subtlety when computing the indeterminacy for type n Frobenius opperations
when n > 2 (the higher operation must be strictly defined); but the result is given by the following
theorem.

Proposition 5.2.3. [29] Let A be a commutative dg-algebra and suppose x, y ∈ H∗(A) are such that
their type 1 nth Frobenius product is strictly defined, that is, that x y = 0 and

H p(|y |−1)(A) = H p(|x|−1)(A) = {0}

· · ·
H pn−1(|y |)−∑n−1

i=1 p i
(A) = H pn−1(|x|)−∑n−1

i=1 p i
(A) = {0}
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and the (n−1)th Frobenius product is equal to 0. Then nth order type 1 Frobenius product is defined
and is a well-defined element of

H pn−1(|x|+|y |)−∑n−1
i=1 p i

(A)

H pn−1(|x|+|y |)−2n−1+∑n−1
i=0 p i

(A)p +xpn−1 H pn−1(|y |)−∑n−1
i=1 p i

(A)+ y pn H pn−1(|x|)−∑n−1
i=1 p i

(A)

and therefore is invariant under quasi-isomorphism.

In this chapter we shall be concerned with the third order Frobenius operation. This corre-
sponds to a E∞-cotriple operation given as follows.

Proposition 5.2.4. Let A be a cup-1-algebra that is quasi-isomorphic to a strictly commutative
dg-algebra. Then the following is a cocycle

c ∪ c + c ∪1 (a ∪b)+a2 ∪K +L∪b2

where dK = b ∪1 b and dL = a ∪1 a.

Remark 5.2.5. The equivalence of A to a strictly commutative dg-algebra guarantees the existence
of K and L as b ∪1 b and a ∪1 a represent Steenrod operations and these must vanish for a strictly
commutative algebra.

We saw in Section 3.4.2.2 that the indeterminacy of this cup-1-product operation can be
computed to be

H 2(|x|+|y |−1)(A)

H (|x|+|y |−1)(A)2 +x2H 2(|y |−1)(A)+ y2H 2(|x|−1)(A)

which is the same as the commutative case. The more interesting example is a third order
Frobenius operation, which we introduce next (with some assumptions on the cup-1-algebra
designed to simplify expressions).

Definition 5.2.6. Let A be a cup-1-algebra over F2. Let x, y ∈ H∗(A) be homogeneous elements
such that x y = 0 and suppose that

H 2(|y |−1)(A) = H 2(|x|−1)(A) = {0}

A defining system for a third order Frobenius product is a collection {a,b,c1,c2} such that a,b
are choices of cocycle representatives for x, y and dc1 = ab. For simplicity, we assume that
a ∪1 b = a ∪1 a = b ∪1 b = 0. In particular, a and b commute. Then

dc2 = c1 ∪ c1 + c1 ∪1 (a ∪b)

The third order Frobenius product is then

c2 ∪ c2 + c2 ∪1 (c1 ∪ c1 + c1 ∪1 (a ∪b))+K

where

dK = (c1 ∪ c1 + c1 ∪1 (a ∪b))∪1 (c1 ∪ c1 + c1 ∪1 (a ∪b)) = c2
1 ∪ c2

1 = c2
1 ∪ (c1 ∪1 c1)+ (c1 ∪1 c1)∪ c2

1

Remark 5.2.7. The equality

(c1 ∪ c1 + c1 ∪1 (a ∪b))∪1 (c1 ∪ c1 + c1 ∪1 (a ∪b)) = c2
1 ∪ c2

1

follows from the fact a ∪1 a = b ∪1 b = 0. Otherwise, we would obtain a much more complicated
expression. Another observation that will be important later is that c1 ∪1 c1 is a cocycle.

The counterexample follows from the fact that one can add any cocycle to the K in Definition
5.2.6. Therefore the third order Frobenius product has a greater indeterminacy in the category of
cup-1-algebras (even those with extra conditions on x and y that we have imposed) than in the
category of strictly commutative algebras.
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5.3 The counterexample

In this section we produce the promised explicit counterexample. The section consists of three
subsections. In the first, we define two strictly commutative algebras with the same cohomology
and explain why they are not quasi-isomorphic as commutative dg-algebras. In the second, we
define and compute a linear basis for C .

5.3.1 The commutative algebras A and B

We shall consider the following strictly commutative dg-algebras.

A = Sym(x, z)/(x2, z2, xz)

Because we are in characteristic 2, degrees do not make a difference as long as they are chosen
so that the operations are strictly defined. The algebra A has the following linear basis {x, z} and
coincides with its cohomology. and

B = Sym(x, t , s)/(x3, xt , t 3, s3, xs, t s)

such that d t = x2, and d s = t 2. It is easy to explicitly write down a basis for B as

{x, x2, t , t 2, s, s2}

and one then easily verifies the cohomology of both A and B is equal to A, under the identification
s2 = z.

Next one computes the 3r d order Frobenius operation of x and x. This operation is clearly
strictly defined. Moreover, for A it is {0}, but for B it is {z}. These are both in different indetermi-
nacy classes, so it follows from Proposition 5.2.3 that the algebras cannot be quasi-isomorphic.

5.3.2 The cup-1-algebra C

Consider the cup-1-algebra C generated by the elements x, s, t , M ,K1,K2,K3,R1,R2L1,L2 subject
to the requirements

• x is a cocycle, d t = x2, d s = t∪t+t∪1 x2, d M = t∪1 t , dK1 = (x∪1 t )∪(x∪1 t ),dK2 = (t∪x)∪(t∪
x)+x3∪1 (t∪x),dK3 = (x∪t )∪(x∪t )+x3∪1 (x∪t ),dR1 = (t∪1 t )∪(x∪1 t ),dR2 = (x∪1 t )∪(t∪1 t )
dL1 = t 2 ∪ (t ∪1 t ),dL2 = (t ∪1 t )∪ t 2

• One has |x| = 5, |t | = 9, |s| = 17, |M | = 16, |K1| = 25, |K2| = |K3| = 28, |R1| = |R2| = 29 and
|L1| = |L2| = 34.

• We introduce a new degree called word length, denoted |− |w where |x|w = 1, |t |w = 2, |s|w =
4, |M |w = 4, |K1|w = |K2|w = |K3|w = 6 |R1|w = |R2|w = 7 and |L1|w = |L2| = 8. We consider word-
length to be additive under both ∪ and ∪1. The differential can easily be checked to preserve
word length. We kill all terms of word length 9 or greater.

• We quotient by x ∪1 x.

• Additionally, we kill all nonexact cocycles of word length 7. It will become clear later why we
impose this condition and also why we do not need to be more specific than this.

• In word length 8, we also kill all nonexact cocycles of word length 8 except s∪s+s∪t 2+L1+L2. In
particular we quotient by s∪1s, M∪1M , M∪M , t∪1t∪1t∪1t , M∪1(t∪1t ) (this is slightly stronger
than killing all the cocycles as M ∪M +M ∪1 (t ∪1 t )+ l is a cocycle where dl = t ∪1 t ∪1 t ∪1 t ).
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For computational reasons it will be helpful to introduce the following subcomplexes.

Definition 5.3.1. Let Ci , j ⊂C denote the subcomplex consisting of the linear span of monomials
of x-word length i and y-word length j . Let Ck ⊂C denote subcomplex consisting of the linear
span monomials of monomials of total length k.

Proposition 5.3.2. The cohomology of C is equal to

Sym(x, z)/(x2, xz, z2)

where z = s ∪ s + s ∪ t 2 +L1 +L2.

Proof. Observe that the differential preserves word-length. It follows that every cocycles can be
written as the sum of cocycles that are homogeneous in word length. Therefore, if C =⊕8

i=1 Ci

then H∗(C ) =⊕8
i=1 H∗(Ci ).

Before proceeding further in the calculation, we make the following observation: one always
has a linear generating set consisting reduced monomials. If one knows all the Hirsch relations
between them, one has a basis and can do the computation directly. There are very few relations
in low word length so it is possible directly compute the cohomology in word length less than or
equal to 6: For the other cases, the fact we kill non-exact cocycles, which will add extra relation in
relevant degrees for reasons of degree, means we can restrict to certain degrees where we can
show there are few or no relations and therefore avoid the bulk of the calculations

First of all, one has that C1 = F2x. It is completely straightforward to directly check by hand
that

H∗(C2) = H∗(C3) = H∗(C4) = H∗(C5) = 0

as one can use a basis of reduced monomials. The main subtlety the above calculation is that in
C4, t ∪1 t and t ∪ t + t ∪1 x2 are cocycles and we add generators

d M = t ∪1 t , d s = t ∪ t + t ∪1 x2.

There remains three more cases, where an extra relation (Equation 5.1) makes an appearance.
This identity first becomes relevant in word length 6. We also note that the only relations that
appear must involve only x and t for reasons of word length. We compute the final three cases by
directly computing a basis. For notational convenience, we shall use < a1, a2, . . . , an > to denote
the set

{aσ(1) ∪aσ(2) ∪·· ·∪aσ(n) : for all σ ∈Sn}

In what follows, we present a spanning set along with relations between all possible generators
(this can be presented more easily than a basis). In each case, the generating set will be arranged
by degree. In what follows, we present a spanning set along with relations between all possible
generators (this can be presented more easily than a basis). In each case, the generating set will
be arranged by degree.

Word length 6

Degree Generating set
24 t ∪1 M
25 K1, t ∪M , M ∪ t , t ∪1 t ∪1 t ,< M ∪1 x, x >
26 < x ∪1 t ∪1 t , x >,< x ∪1 t , x ∪1 t >,< t ∪1 t , t >,< M , x, x >
27 K2,K3,< x, x, t ∪1 t >,< x, t , x ∪1 t >, t ∪ t ∪ t
28 < x, x, x, x ∪1 t >,< x, x, t , t >
29 < x, x, x, x, t >
30 x6
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The only linear relation that can appear here is

x ∪ t ∪ (x ∪1 t )+ (x ∪1 t )∪x ∪ t + t ∪x ∪ (x ∪1 t )+ (x ∪1 t )∪ t ∪x = 0

This relation implies that dK1 = (x ∪1 t )∪ (x ∪1 t ) is a cocycle. Everything else is as expected.

Word length 7

Degree Generating set
28 M ∪1 t ∪1 x
29 K1 ∪1 x, s ∪1 t ∪1 x,< M ∪1 t , x >,< M , t ∪1 x >
30 K1 ∪x, x ∪K1 < t ∪1 t ∪1 t , x >,< t ∪1 x, t ∪1 t >,< M , t , x >,< s ∪1 t , x >,< s, x ∪1 t >,< s ∪1 x, t >
31 K2 ∪1 x,K3 ∪1 x,< t ∪1 t , x, t >,< x ∪1 t , t , t >< s, t , x >,< x ∪1 t , x ∪1 t >,< t ∪1 t , t >,< M , x, x, x >,< s ∪1 x, x, x >
32 < K2, x >,< K3, x >< s, x, x, x >,< x, t , t , t >,< x, x, x, t ∪1 t >,< x, x, t , x ∪1 t >
33 < x, x, x, t , t >,< x, x, x, x, x ∪1 t >
34 < x, x, x, x, x, t >
35 x7

There are several linear relations here.

x2 ∪ t ∪ (x ∪1 t )+x ∪ (x ∪1 t )∪x ∪ t +x ∪ t ∪x ∪ (x ∪1 t )+x ∪ (x ∪1 t )∪ t ∪x = 0

x ∪ t ∪ (x ∪1 t )∪x + (x ∪1 t )∪x ∪ t ∪x + t ∪x ∪ (x ∪1 t )∪x + (x ∪1 t )∪ t ∪x ∪x = 0

x ∪1 (x ∪ t ∪ (x ∪1 t )+ (x ∪1 t )∪x ∪ t + t ∪x ∪ (x ∪1 t )+ (x ∪1 t )∪ t ∪x) = 0

x ∪ t ∪ (t ∪1 t )+ t ∪x ∪ (x ∪1 t ) = 0

(t ∪1 t )∪x ∪ t + (x ∪1 t )∪ t ∪x = 0

The first two linear relations create cocycles that are killed by x ∪K1 K1 ∪x. The third means that

x2∪(x∪1 t )∪(x∪1 t )+x∪(x∪1 t )∪x∪(x∪1 t )+x∪(x∪1 t )∪x∪(x∪1 t )+x∪(x∪1 t )∪(x∪1 t )∪x = 0.

The final two linear equations imply that (x ∪1 t )∪ (x ∪1 t ) = dR1 and (x ∪1 t )∪ (t ∪1 t ) = dR2 are
cocycles. Finally, there are linear relations arising from different expansions of (a1 ∪a2 ∪a3)∪
(a4∪a5) where {a1, a2, a3, a4, a5} is the set {t , t , x, x, x}. For degree reasons, it will not be necessary
to analyse the relations coming from these in any great detail. Any cocycles produced this way
are automatically killed.

Word length 8

Degree Generating set
32 M ∪1 t ∪1 t
33 s ∪1 t ∪1 t ,< x, M ∪1 x ∪1 t >,< M ∪1 t , t >, t ∪1 t ∪1 t ∪1 t
34 L1,L2,< x, s ∪1 x ∪1 t >,< s ∪1 t , t >,< M , t , t >,< M ∪1 x, t , x >,< M ∪1 t , x, x >

34 (ctd) < M , x ∪1 t , x >,< x, x, t ∪1 t ∪1 t >,< t ∪1 t ∪1 t , t >,< x ∪1 t , x ∪1 t ∪1 t >,< R1, x >,< R2, x >
34 (ctd) < x, x ∪1 t ∪1 t ∪1 t >,< t , t ∪1 t ∪1 t >

35 < M , x, x, t >,< s, t , t >,< s ∪1 x, t , x >,< s ∪1 t , x, x >,< s, x ∪1 t , x >,< x, x ∪1 t , t ∪1 t >,< t ∪1 t , t , t >,
35 (ctd) < M ∪1 x, x, x, x >,< x ∪1 t ∪1 t , t ∪1 t >,< x ∪1 t ∪1 t , x, t >,< x ∪1 t ∪1 t , x, x, x >,< x, x, t ∪1 t ∪1 t >

36 < s ∪1 x, x, x, x >,< M , x, x, x, x >,< s, t , x, x >,< x, x, x ∪1 t , x ∪1 t >
36 (ctd) < x, x, t , t ∪1 t >,< x, x ∪1 t , t , t > t ∪ t ∪ t ∪ t

37 < x, x, x, x, t ∪1 t >,< x, x, x, t , x ∪1 t >,< x, x, t , t , t >,< s, x, x, x, x >
38 < x, x, x, x, x, x ∪1 t >,< x, x, x, x, t , t >
39 < x, x, x, x, x, x, t >
40 x8
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The terms t 2 ∪ (t ∪1 t ) and (t ∪1 t )∪ t 2 are both cocycles because of the Hirsh identities

x2 ∪ t ∪ (t ∪1 t )+ (x2 ∪1 t )∪ t ∪ t = (x2 ∪ t )∪1 (t ∪1 t ) = t ∪x2 ∪ (t ∪1 t )+ (x2 ∪1 t )∪ t ∪ t

(t ∪1 t )∪x2 ∪ t + t ∪ t (x2 ∪1 t ) = (t ∪x2)∪1 (t ∪1 t ) = x2 ∪ t ∪ (t ∪1 t )+∪t ∪ t ∪ (x2 ∪1 t )

Next, we discuss the relevant relations to t 2∪(t∪1 t ) and (t∪1 t )∪t 2. Both terms are a cup product
of (t ∪1 t) which is both a cocycle and of word length 4 with other terms of total word length 4.
Our result will follow from the following statement:

Lemma 5.3.3. The cocycles t 2 ∪ (t ∪1 t), (t ∪1 t)∪ t 2, t 2 ∪ (t ∪1 t)+ (t ∪1 t)∪ t 2 are not exact in
C − {L1,L2}, and t 2 ∪ (t ∪1 t )+ (t ∪1 t )∪ t 2 is not exact in C − {L1}.

Proof. First, observe that these cocycles are of degree 35. Observe that any linear dependence
must contain either four copies of t or it must contain three copies of t and two copies of x and
two uses of ∪1. There is only one identity fitting either of those descriptions, that being:

x ∪ t ∪ (x ∪1 t ∪1 t )+ (x ∪1 t ∪1 t )∪x ∪ t + t ∪x ∪ (x ∪1 t ∪1 t )+ (x ∪1 t ∪1 t )∪ t ∪x+
x ∪ (t ∪1 t )∪ (x ∪1 t )+ (x ∪1 t )∪x ∪ (t ∪1 t )+ (t ∪1 t )∪x ∪ (x ∪1 t )+ (x ∪1 t )∪ (t ∪1 t )∪x = 0.

Combined with the fact that we know we have a generating set of the form

Degree Generating set
35 < M , x, x, t >,< s, t , t >,< s ∪1 x, t , x >,< s ∪1 t , x, x >,

35 (ctd) < s, x ∪1 t , x >,< x, x ∪1 t , t∪t >,< t ∪1 t , t , t >,< x, x, t ∪1 t ∪1 t >
35 (ctd) < M ∪1 x, x, x, x >,< x ∪1 t ∪1 t , t ∪1 t >,< x ∪1 t ∪1 t , x, t >,< x ∪1 t ∪1 t , x, x, x >

we can compute a 42 dimensional linear basis of C 35
8 . Furthermore, we have a generating set for

C 34
8 − {L1,L2} as

Degree Generating set
34 < x, s ∪1 x ∪1 t >,< s ∪1 t , t >,< M , t , t >,< M ∪1 x, t , x >,< M ∪1 t , x, x >,< R1, x >,

34 (ctd) < M , x ∪1 t , x >,< x, x, t ∪1 t ∪1 t >,< t ∪1 t ∪1 t , t >,< x ∪1 t , x ∪1 t ∪1 t >,< R2, x >
34 (ctd) < x, x ∪1 t ∪1 t ∪1 t >,< t , t ∪1 t ∪1 t >

It suffices to check now that the three terms given are non-zero in cohomology. Our result can
therefore be proven via a straightforward cohomology computation.

Observe that in the last table t ∪ t ∪ (t ∪1 t)+ (t ∪1 t)∪ t ∪ t is a cocycle by Equation 5.1. It
follows that H∗(C8) = F2[s ∪ s + s ∪ (t 2 +x2 ∪ t +L1 +L2]

5.3.3 The zig-zag

However, there is a map
f : C → A

given by sending x to itself, t , s, M to zero and L to z. This map is a quasi-isomorphism. Then
there is a map

g : C → B

given by sending x, s, t to themselves and K , M to 0. This map is also a quasi-isomorphism.
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CHAPTER 6

A higher Hochschild–Kostant–Rosenberg theorem and associated
operations

Abstract

We prove a generalisation of the Hochschild–Kostant–Rosenberg theorem that holds for all
commutative algebras and formal spaces. Using a A∞-version of the coendomorphism operad,
we define the notion of a coalgebra on the Hochschild homology. Finally, we specialise to the case
of iterated suspensions and construct the En+1-coalgebra coming from the Deligne conjecture
on a model for the Hochschild chain complex.

6.1 Introduction

Hochschild (co)homology [46] is a (co)homology theory for associative algebras over rings. It
turns out to have a multitude of uses in geometry, topology and even physics. For example, the
second cohomology group controls the deformation theory of associative algebra. The classical
HKR theorem acts as a bridge between homological algebra and geometry, and is very closely
related to Kontsevich formality.

The classical Hochschild–Kostant–Rosenberg theorem is normally stated as follows.

Theorem 6.1.1. Let k be a field of characteristic 0 and let A be a commutative k-algebra which is
essentially of finite type and smooth over k. Then there is an isomorphism of graded k-algebras

Φ : H H∗ (A, A)
∼−→Ω∗ (A,k)

between the Hochschild homology and the module of Kähler differentials. Dually, there is an
isomorphism between the exterior algebra of derivations and the Hochschild cohomology

H H∗ (A, A) ∼=Λ∗ (Derk (A, A))

The assumption of smoothness is essentially a projectivity assumption on the module of Kähler
differentials and can be be removed by working with cotangent complex instead. The Hochschild
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homology can be computed as the homology of the Hochschild chain complex A⊠S1 and cotan-
gent complex can be viewed as the homology of Sym(V ⊗H∗ (X ) ,dX ) where

(
Sym(V ),d

)
is a

cofibrant resolution of A. The main result of this chapter is therefore following generalised ver-
sion of the HKR theorem, which exhibits HKR-type statements primarily as consequences of
formality.

Theorem 6.1.2. Let X be a formal simplicial set of finite type in each degree. Let A be a CDGA. Sup-
pose that

(
Sym(V ) ,d

)
is a cofibrant, quasi-free resolution of A. Then there is a natural equivalence

of chain complexes
A⊠X

∼−→ Sym(V ⊗H∗ (X ) ,dX )

We call Sym(V ⊗H∗ (X ) ,dX ) the higher X -shaped cotangent complex of A ∼= (
Sym(V ) ,d

)
. More-

over this equivalence is functorial with respect to formal maps.

When X = S1, one recovers the classical HKR theorem. In the cases of Sn and wedges of
spheres, one recovers the various HKR theorems of [40, Proposition 4.7].

This result has some immediate applications. Let M be a topological space and A be a cdga
rational model for M . There is a canonical algebra map C∗ (

Map(X , M
)
) → A⊠X induced by the

Chen iterated integrals, see [39]. This map is an equivalence whenever M is dim(X )- connected.
There is a dual map from chains on the mapping space to higher Hochschild cochains as well.
Our HKR-theorem therefore shows that the (co)tangent complex is a very simple model for such
mapping spaces.

A second motivation for studying the higher HKR quasi-isomorphism comes from derived
algebraic geometry and mathematical physics. Indeed, in this context one [70] can define derived
n-Poisson (dg-)schemes (or stacks), which is the data for instance provided by the observables of
a n-dimensional quantum field theory. The classical Kontsevich theorem is the n = 1 case. In this
higher context one might aim to deform the sheaf of functions OX into an E1-algebra structure
on OX [[ħ]] (in the smooth affine case) or rather to deform its symmetric monoidal category of left
modules into an En−1-monoidal category locally equivalent to modules over an En-deformation
of OX [[ħ]]. The higher Hochschild cochain complexes along with En+1-structure are the objects
controlling those deformations while their cohomologies are precisely the higher analogues of
polyvector-fields for higher Poisson structures.

Motivated by this physical intuition, we explain how to define an n-Poisson algebra structure
on the homology of an n-fold suspension, generalising the usual cup coproduct on Hochschild
homology.

Finally, we conclude by constructing a completely explicit n +1-Poisson coalgebra structures
on the cotangent complex. By the formality of the little n-discs operad in zero characteristic and
by our HKR-theorem, these very simple models are equivalent to the full En-coalgebra structure
on Hochschild homology and therefore provide a solution to the Deligne conjecture in this
context.

In this chapter, we found it convenient to work with Hochschild homology rather than coho-
mology, even though though the latter appears to be more used in practice. Statements about the
latter can generally be obtained from our statements by taking the linear dual at the chain level.

6.1.1 Conventions

We will always be working over a base field of characteristic 0, usually taken to beQ. Our model
for the E∞-operad is the singular chains on the Barratt-Eccles operad E . We shall use ∗ to denote
the coproduct in the category of associative dg-algebras.
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6.1.2 Structure of this chapter

In Section 2, we shall review some preliminaries. In Section 3, we shall explain the connection
between E -coalgebras and the Hochschild chain complex. In Section 4, we discuss concrete
models for derived tensor products of E -algebras. In Section 5, we prove our version of the HKR-
theorem. In Section 6, we construct a n-Poisson algebra structure on the (ordinary) homology of
an n-fold suspension H∗(Σn X ). Finally, in Section 7, we apply this theory to show how to construct
and compute explicit operations on the higher Hochschild chain complex and cotangent complex
generalising the usual cup coproduct on Hochschild homology.

6.2 Preliminaries

In this section, we review some preliminaries about the higher Hochschild homology and the
Dold-Kan theorem.

6.2.1 The higher Hochschild chain complex

A higher order version of Hochschild cohomology was introduced by Pirashvili in [73]. In this
theory, E -algebras assume the role of commutative algebras. The category of E -algebras is
enriched in simplicial sets via

MapE−alg (A,B)n = Hom
(

A,B ⊗C∗ (
∆n))

,

and has all ∞-colimits. In particular, one can therefore define the tensor product X ⊠ A ∈ E−alg
of an E -algebra A and a simplicial set X . Explicitly, X ⊠ A is defined by the universal property
that for every E -algebra B there is a natural equivalence of derived mapping sets

MapE−alg (X ⊠ A,B) ∼= MapsSet

(
X ,MapE−alg (A,B)

)
We briefly remark that the same construction holds for all (∞,1)-categories. Ginot, Tradler

and Zeinalian have shown that when A is a CDGA, one can choose a model for the E -algebra
X ⊠ A that is a CDGA and which admits a purely combinatorial construction [38]. They use this
to show the following

Proposition 6.2.1. [39] Let A be a CDGA over a field of characteristic 0. Then A⊠S1 is modelled by
the usual Hochschild chain complex C∗ (A, A), where S1 is the usual simplicial model for the unit
circle.

This motivates the following definition.

Definition 6.2.2. Let A be a CDGA or an E -algebra over a field of characteristic 0 and let X be a
simplicial set. Then we refer to X ⊠ A as the higher X -shaped Hochschild chain complex. We refer
to its homology as the X -shaped Hochschild homology and denote it by H H X∗ (A, A).

6.2.2 Dold-Kan for simplicial commutative rings

We will later need the following version of the Dold-Kan correspondence.

Theorem 6.2.3. For k a field of characteristic 0 there is a Quillen equivalence

N : sCom-algk⇆ E−coAlgk : Q

between connected commutative connective E -algebras over k and connected commutative simpli-
cial algebras over k
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6.2.3 The little n-discs operad and Poisson algebras

We recall the little n-discs operad Dn from the first chapter. In characteristic zero there are two
main theorems about it that we shall use in this chapter. The first is the well known computation
of its homology.

Theorem 6.2.4. [79] The homology of the little n-discs operad H∗(Dn) is isomorphic to the n-
Poisson operad Poisn .

The second is its formality.

Theorem 6.2.5. [85] In characteristic 0, the homology of the little n-discs operad is formal. In
other words, the homology H∗(Dn) is weakly equivalent, in the model category of operads in chain
complexes, to the singular chains C∗(Dn).

6.3 The Hochschild chain complex and E -coalgebras

The purpose of this section is to prove the following theorem.

Theorem 6.3.1. Let X ∈ sSet and A ∈ E −alg. Then there exists an is a weak equivalence of
E -algebras between X ⊠ A and C∗ (X )⊗L

E
A. In other words, the diagram

sSet×E −alg E −alg

E −coalg×E −alg

⊠

C∗×i d ⊗L
E

commutes up to homotopy.

The derived tensor product of an E -algebra and an E -coalgebra.The derived tensor product
⊗L

E
in the statement of the theorem is defined as follows. Via the Dold-Kan correspondence

for simplicial commutative rings, the category of E -algebras is enriched in E -coalgebras via

N
(
MapE−alg ((A,B)

)
, and has all ∞-colimits. The tensor product of an E -algebra with an E -

coalgebra is E -algebra A⊗LB is therefore defined by the universal property that for all E -algebras
C there is an equivalence of derived mapping sets.

MapE−alg

(
A⊗LB ,C

)∼= MapE−coalg

(
A, N

(
MapE−alg (B ,C )

))
To prove the Theorem 6.3.1, we shall need the following lemma.

Lemma 6.3.2. Let X be a simplicial set and let G be a simplicial commutative ring. Then there is
an isomorphism of mapping sets

F : MapsSet (X ,G) −→ MapE−coalg (C∗ (X ) , N (G)) .

Proof. The singular chains functor C∗ : sSet→ E −coalg, along with the Eilenberg-Zilber map,
induces a map

G : MapsSet (X ,G)
C∗(−)−−−−→ MapE−coalg (C∗ (X ) ,C∗ (G)) .
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Now, there is a map C∗(G) → N (G), given explicitly by sending the formal sums of chains in C∗(G)
to the internal addition in N (G). Postcomposing with this map gives the desired map

F : MapsSet (X ,G) −→ MapE−coalg (C∗ (X ) , N (G)) .

Now this map is an isomorphism, because it admits an explicit inverse, given by restricting maps
f : C∗ (X ) → N (G) to the simplicial set of generators X . This gives a map X → N (G) and N (G) is
isomorphic to G as a simplicial set.

Now we can prove the theorem.

Proof of Theorem 6.3.1. Let B ∈ E −alg. We have the following chain of adjunctions. Firstly, the
definition of X ⊠ A tells us that

MapE−alg (X ⊠ A,B)
∼−→ MapsSet

(
X ,MapE−alg (A,B)

)
where MapE−alg (A,B) is the simplicial enrichment of the mapping space.

By Lemma 6.3.2, there is an isomorphism

MapsSet

(
X ,MapE−alg (A,B)

)
F−→ MapE−coalg

(
C∗ (X ) , N

(
MapE−alg (A,B)

))
.

Finally by the definition of C∗ (X )⊗L
E

A we showed that there is an isomorphism

MapE−coalg

(
C∗ (X ) ,C h

(
MapE−alg (A,B)

))∼= MapE−alg

(
C∗ (X )⊗LE A,B

)
.

concluding the proof.

6.4 Computing the derived tensor product

The purpose of this section is to show that concrete descriptions of the derived tensor product for
CDGAs and explain how it may be computed simply. The main result is the following.

Definition 6.4.1. Let A be a E -algebra and C be a E -coalgebra. Their tensor product is

C ⊗E A = coeq

( ⊕
f :{1,...p}→{1,...q}

C⊗p ⊗E (p, q)⊗ A⊗q â⊕
n

C⊗n ⊗ A⊗n

)

The upper map in the coequalizer is induced by the unique maps f ∗ : C⊗p ⊗E (p, q)⊗ A⊗q →
C⊗q ⊗ A⊗q obtained from the E -coalgebra structure of C and the lower map is induced by the
maps f∗ : C⊗p ⊗E (p, q)⊗ A⊗q →C⊗p ⊗ A⊗p induced by the E -algebra structure on A.

Proposition 6.4.2. Let A be a fibrant E -coalgebra and C be a cofibrant E -algebra. Then C ⊗L
E

A is
weakly equivalent to C ⊗E A.

To prove this proposition, we first introduce a concrete model B (C ,E , A) for C ⊗L
E

A. Then our
proof shall follow by constructing an explicit retraction on this model.
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6.4.0.1 Modelling the derived tensor product by a bar construction

In this subsubsection, we shall given an explicit model for the tensor product of a E -algebra with
a E -coalgebra, via the bar construction. First, we recall the notion of the properad associated to
an operad.

Definition 6.4.3. Let P (−) be an operad. The properad P (−,−) associated to P is defined
componentwise to be

P (p, q) = ⊕
n1+···np=q

(
p⊗

i=1
P (ni )

)
.

Now, C ⊗L
E

A is a left adjoint, and therefore may be computed as homotopy colimit.

Proposition 6.4.4. Let A be a P -algebra and C be a P -coalgebra. Then their derived tensor
product C ⊗L

P
A may be computed as an homotopy coequalizer in the category of P -algebras

C ⊗LP A = hocoeq

( ⊕
f :{1,...p}→{1,...q}

C⊗p ⊗P
(
q, p

)⊗ A⊗q â⊕
n

C⊗n ⊗ A⊗n

)

where the maps f : {1, . . . p} → {1, . . . q} are maps of sets. The upper map in the coequalizer is induced
by the maps f ∗ : C⊗p ⊗P

(
q, p

)⊗ A⊗q → C⊗q ⊗ A⊗q obtained from the coalgebra structure of C
and the lower map is induced by the maps f∗ : C⊗p ⊗P

(
q, p

)⊗ A⊗q →C⊗p ⊗ A⊗p induced by the
algebra structure. The homotopy coequalizer is computed as realizations of a bar construction, and
therefore inherits an E -algebra structure.

Proof. It suffices to show that the homotopy colimit defined in the statement satisfies the univer-
sal property of the derived tensor product, ie. for all E -algebras E , one has an isomorphism of
derived mapping spaces

MapE−alg

(
C ⊗LE A,E

)∼= MapE−coalg

(
A, N

(
MapE−alg (A,E)

))
The homotopy left adjoint has an explicit formula, which is the homotopy colimit formula
appearing above.

As usual, the homotopy coequalizer above has an explicit model given by the two-sided bar
construction

B(C ,P , A).

To be precise, this is defined as the totalization of the following simplicial chain complex.

• The r -dimensional component is

B(C ,E , A)r =
⊕

f :{1,...p}→{1,...q}
k1,...kr−1

C⊗p ⊗E
(
q,k1

)⊗E (k1,k2)⊗E
(
kr−1, p

)⊗ A⊗q for r > 0.

B(C ,E , A)0 =
⊕

n
C⊗n ⊗ A⊗n

• The face map d0 is induced by the coalgebra structure on C , the map dn is induced by the
algebra structure on A, and the map di for 0 < i < n come from composition in the properad.

• Let id ∈ E (1) be the operadic identity. The degeneracy maps are all given by inserting the n-fold
tensor product of identity map id⊗n ∈ E (n,n).
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Proof of Proposition 6.4.2. We prove this using an extra degeneracy argument. Let A = (E (V ),d1)
and C = (E c (W ),d2), then there is a canonical map

v−1 : E (V )⊗n → E (r,n)⊗V ⊗r

γ1(x1,1, . . . x1,k1 )⊗·· ·⊗γn(xn,1, . . . xn,kn ) 7→ (
γ1 ⊗·· ·⊗γn

)⊗x1,1 ⊗·· ·⊗x1,k1 ⊗·· ·⊗xn,kn

where r = k1 +·· ·+kn . This defines a map

s−1 = id⊗v−1 : B
(
E c (W ) ,E ,E (V )

)
l → B

(
E c (W ) ,E ,E (V )

)
l+1

One can check that this defines an extra degeneracy. By the standard argument, this defines a
contraction between B (E c (W ) ,E ,E (V )) and the simple tensor product E c (W )⊗E E (V ).

6.5 The higher Hochschild-Konstant-Rosenberg theorem

The main result of this chapter is the following generalised version of the HKR theorem.

Theorem 6.5.1. Let X be a simplicial set of finite type in each degree and suppose that X is formal.
Let A be a CDGA. Suppose that

(
Sym(V ) ,d

)
is a cofibrant, quasi-free resolution of A. Then there is

a natural equivalence
A⊠X

∼−→ Sym(V ⊗H∗ (X ) ,dX )

We call Sym(V ⊗H∗ (X ) ,dX ) the higher X -shaped cotangent complex of A ∼= (
Sym(V ) ,d

)
. More-

over, if f : X → Y is a formal map, we have a homotopy commutative diagram

A⊠X
(
Sym(V ⊗H∗ (X )) ,dX

)
A⊠Y

(
Sym(V ⊗H∗ (Y )) ,dY

)i d⊠ f

∼

Sym(i d⊗H( f∗))
∼

The differential dX is defined as follows. Let∆(n−1) be the iterated coproduct on H∗ (X ) . Then, using
Sweedler notation, define

∆(n−1) (α) =Σα(1) ⊗·· ·⊗α(n)

and, for v ∈V let
d (v) =Σv(1) · · ·v(n)

where v(1), . . . v(n) ∈V. Then dX is the unique derivation extending the product

dX (v ⊗α) =Σ(
v(1) ⊗α(1)

) · · ·(v(n) ⊗α(n)
)

The above statements may be dualized.

The remainder of this section will be devoted to proving the above theorem. First, we shall
prove a lemma that gives a description of the differentials

Lemma 6.5.2. Let A be a cocommutative coalgebra and let (E (V ) ,d) be a quasi-free commutative
algebra. Then there is an isomorphism of commutative algebras, which is functorial in A

A⊗Com Sym(V ) ∼= (
Sym(A⊗V ) ,dX

)
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where the differential dX is defined as follows. Let ∆(n−1) be the iterated coproduct on A. Then,
using Sweedler notation, define

∆(n−1) (α) =Σα(1) ⊗·· ·⊗α(n)

and, for v ∈V let
d (v) =Σv(1) · · ·v(n)

where v(1), . . . v(n) ∈V. Then dX is the unique derivation extending the product

dX (v ⊗α) = dA (v)⊗α+Σ(
v(1) ⊗α(1)

) · · ·(v(n) ⊗α(n)
)

Proof. An element of u ∈ A⊗Comm Sym(V ) may be expressed, non-uniquely, as

(a1 ⊗a2 ⊗·· ·ak )⊗ (
v1,1v1,2 · · ·v1,l1 ⊗ v2,1v2,2 · · ·v2,l2 ⊗·· ·⊗ vk,1vk,2 · · ·vk,lk

)
where the ai ∈ A and the vi , j ∈ V. The canonical form of u may be defined as follows. Let
∆(li−1) (ai ) = ai ,1 ⊗·· ·⊗ai ,li . Then u can be written as(

(a1,1 ⊗ v1,1
)⊗ (

(a1,2 ⊗ v1,2
)⊗·· ·⊗ (

(a1,l1 ⊗ v1,l1

)⊗·· ·⊗ (
(ak,lk ⊗ vk,lk

)
.

It is clear that this is a unique way to express u. The tensor product of two elements in canonical
form is still in canonical form. This proves that A⊗Comm Sym(V ) is a free commutative algebra
on the basis A⊗V . Next we need to compute the differential. We see that

d (α⊗ v) = d (α)⊗ v +α⊗d (v) =α⊗d (v) =α⊗Σv(1) · · ·v(n).

Put in canonical form, we see that this is exactly the desired differential.

We now proceed to the proof of the main result.

Proof of Theorem 6.5.1. By Theorem 6.3.1 there is a weak equivalence of E -algebras

X ⊠ A ∼=C∗ (X )⊗LE A.

The E coalgebra C∗(X ) has a minimal model
(
E c (W ) ,d ′) and A ∼= (E (V ) ,d), so it follows that

C∗ (X )⊗LE A ∼= (
E c (W ) ,d ′)⊗LE (E (V ) ,d) .

By Proposition 6.4.2, this can now be computed as the ordinary tensor product(
E c (W ) ,d ′)⊗LE (E (V ) ,d) ∼= (

E c (W ) ,d ′)⊗E (E (V ) ,d) .

Since E →Com is a weak equivalence, one has(
E c (W ) ,d ′)⊗E (E (V ) ,d) ∼= (

Symc (W ) ,d ′)⊗Com

(
Sym(V ) ,d

)
It follows from Lemma 6.5.2 that one has(

Symc (W ) ,d ′)⊗Com

(
Sym(V ) ,d

) ∼−→ (
Sym

(
Symc (W )⊗V

)
,dW

)
.

Since C∗(X ) is formal, there is a quasi-isomorphism of coalgebras H∗(X ) → Symc (W ) . It remains
to show that this induces a quasi-isomorphism of chain complexes(

Sym(H∗(X )⊗V ) ,dX
) ∼−→ (

Sym
(
Symc (W )⊗V

)
,dW

)
.

To prove this, filter both complexes by weight in the outermost copy of Sym. As, by Kunneth’s
theorem

H∗
(
(H∗(X )⊗V )⊗k

)∼= H∗
((

Symc (W )⊗V
)⊗k

)
,

it is obvious that the associated spectral sequences have isomorphic E 1-pages. Since there is a
map of chain complexes between them, they therefore converge to the same object. The result
follows.

Functoriality follows from the functoriality in Lemma 6.5.2.
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6.6 Transferring coalgebra structures from topological spaces
to cohomology

We explain two approaches to transferring the En-coalgebra structure from the first chapter
to chain complexes. The second approach will be used later to extend the En-structure on
Hochschild chain complex to an En+1-structure.

6.6.0.1 Applying the singular chains functor directly

The simplest way to obtain an En-coalgebra structure in chain complexes from that is spaces is to
apply the singular chains functor. One then sends wedge product is sent to the direct sum via the
quasi-isomorphism of chain complexes C∗(X ∨Y )↠C∗(X )⊕C∗(Y ).

Proposition 6.6.1. Let Σn X be the n-fold suspension of a space X . Then the singular chains
C∗ (Σn X ) form a coalgebra over C∗ (Dn), the singular chains on the little n-discs operad with
respect to the direct sum.

Proof. Consider the following composite map

C∗ (Dn (k))⊗C∗
(
Σn X

) E Z−−→C∗
(
Dn (k)×Σn X

) C∗(△k )−−−−−→C∗
((
Σn X

)∨k
)
→C∗

(
Σn X

)⊕k (6.1)

where E Z is the Eilenberg-Zilber map. This defines an En-coalgebra structure on C∗ (Σn X ) with
respect to the direct sum.

Example 6.6.2. We can take the homology of the map in (6.1). So we obtain maps

H∗ (Dn (k))⊗H∗
(
Sn)→ H∗

((
Sn)∨k

)∼= H∗
(
Sn)⊕k

The homology of Sn is concentrated in degrees 0 and n. The homology of H∗ (Dn (k)) is concen-
trated in degrees i (n −1) for k −1 ≥ i ≥ 0. So, for degree reasons, there is only one element of
µ ∈ H∗ (Dn (k)) for which the map

µ×H∗
(
Sn)→ H∗

(
Sn)⊕k

is nonzero, that is, for |µ| = 0. In this case, the resulting map is x 7→ x1 +·· ·+xk . In particular the
Poisson bracket vanishes.

Remark 6.6.3. A problem that we shall later face is that the map C∗(X ∨Y ) ↠ C∗(X )⊕C∗(Y )
is not a map of associative coalgebras and loses some structure that existed on the topological

level. Indeed, on the chain level, the quasi-isomorphism C∗
(
(Σn X )∨k

)
→C∗ (Σn X )⊕k introduce

relations that kill a lot of the higher structure. The image of the Whitehead product in C∗ (Sn)⊕2

can be expressed as the sum of two simplices, one of the form (σ1,0) and the other of the
form (0,σ2). No such relation exists in C∗

(
(Σn X )∨2) . The coalgebra structure of Lemma 6.6.1 is

therefore the forced strictification of the En-coalgebra structure to a Com-coalgebra.

When working rationally, the key to solving this problem is taking into account the associative
structure of the diagonal map.
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6.6.1 Coalgebras in chain complexes

In this section, we define of the coendomorphism operad that takes into account the A∞-structure.
This will be important because when constructing the Poisson operad structure.

Definition 6.6.4. Let C be a conilpotent, coassociative coalgebra in chain complexes with zero
differential. Then the A∞-coendomorphism operad CoEndA∞(C ) of C , in arity k is the following
chain complex

CoEndA∞(C )(k) =MapAss−al g

(
Ω (C ) ,Ω (C )∗k

)
.

Here Ω(−) is the cobar construction. The symmetric action is given by permuting the coproduct
and the composition is determined by the function composition.

It is straightforward to verify that that above is an operad. In the concrete cases we look at in
this chapter, C will also have primitive multiplication and therefore one has

CoEndA∞(C )(k) =MapC h

(
s−1C ,T

(
s−1C

)∗k
)

.

Remark 6.6.5. This is a simplified version of the coendomorphism operad that we discuss in the
appendix. This may shed more light on the geometric meaning of the coendomorphism operad
construction.

6.6.2 Transferring En-coalgebra structures to chain complexes

In this section, we shall transfer the En-coalgebra structure on iterated suspensions from the first
chapter to chains and homology.

6.6.2.1 Compatibility with the diagonal map

The diagram

Dn (k)×Sn (Sn)∨k

Dn (k)× (Sn)×l
(
(Sn)∨k

)×l

i d×dl

△k

dl

(△k )×l

where dl : X → X ×l is the diagonal, commutes. Therefore, for everyµ ∈Dn (k) the map C∗
(△k

(
µ×−))

is also a map of E -coalgebras, where the E -coalgebra structures on Sn and (Sn)∨k are given by
the diagonal maps. One can therefore think of the associative structure on singular chains as
being codistributive over the En-structure.

6.6.3 The homological level

Consider the En-algebra map from the first chapter with a slight twist. Instead of studying the
En-coalgebra structure on Sn , we apply the Moore loop space functorΩ to all the maps obtained
this way. Taking homology, one obtains

H∗ (Dn (k))×H∗
(
ΩSn) α−→ H∗

(
Dn (k)×ΩSn) H∗(p)−−−−→ H∗

(
Ω

((
Sn)∨k

))
(6.2)
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Here, p is the map coming from the following factorisation

Dn (k)×ΩX L (Dn (k))×L (X ) L (Dn (k)×X ) L
(
X ∨k

)
Ω

(
X ∨k

)
i1×i2

p

Here i1 :Dn (k) →L (Dn (k)) is the inclusion of constant loops and i2 :ΩX →L (X ) is the inclu-
sion of the based loop space into the free loop space. The reader may check that the coproduct of
ΩX andΩY in the category of associative topological monoids isΩ(X ∨Y ). The reader may verify
that loop composition is preserved in the above diagram. The following proposition therefore
immediately follows from [33, Theorem 2.22].

Proposition 6.6.6. The Moore loop spaceΩΣn X of an n-fold suspension Σn X is a coalgebra over
the little n-discs operad Dn in the category of associative monoids in topological spaces.

Example 6.6.7. More generally, we perform this construction for any n-fold suspension Σn X .

H∗ (Dn (k))⊗H∗
(
ΩΣn X

) E Z−−→ H∗
(
Dn (k)×ΩΣn X

) H∗(Ω△k )−−−−−−→ H∗
(
Ω

((
Σn X

)∨k
))

. (6.3)

By Adams’ theorem [1], H∗ (ΩΣn X ) is a Hopf algebra and is isomorphic to ΩH∗ (Σn X ). Then, we
have the following lemma.

Proposition 6.6.8. Let X be a simply connected topological space. Then there is an isomorphism
of Hopf algebras

H∗
(
Ω

(
(X )∨k

))∼=Ω (H∗(X ))∗k .

Proof. By Adams’ theorem H∗
(
Ω

(
X ∨k

))
is isomorphic to ΩH∗

(
X ∨k

)
. It is well known that re-

duced cohomology ring of H̄∗
(
X ∨k

)
is the direct product of rings

∏k
i=1 H̄∗ (X ) . The result follows

either by direct computation or by observing that the functor Ω is a left adjoint and therefore
preserves coproducts.

So, we can rewrite (6.3) as a map

H∗ (Dn (k))⊗Ω(
H∗

(
Σn X

))→Ω
(
H∗

((
Σn X

)))∗k

By adjunction, this is a map

Poisn (k) = H∗ (Dn (k)) → MapC h

(
Ω

(
H∗

(
Σn X

))
,Ω

(
H∗

((
Σn X

)))∗k
)

(6.4)

Our next theorem states that this map can be restricted to produce a coalgebra map.

Proposition 6.6.9. For Σn X an n-fold suspension, the map (6.4) admits a factorisation

H∗ (Dn (k)) MapC h

(
Ω (H∗ (Σn X )) ,Ω (H∗ ((Σn X )))∗k

)

CoEndA∞ (H∗ (Σn X ))

which is a map of operads. It follows that H∗(Σn X ) is equipped with a Poisn-coalgebra structure.
The n-Poisson operad is generated by a symmetric operation µ ∈Poisn(2)0 and an anti-symmetric
operation τ ∈Poisn(2)n . The coalgebra structure on H∗(Σn X )

△µ :ΩH∗(Σn X ) →ΩH∗(Σn X )∗2
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is generated by the map
s−1x 7→ s−1xl + s−1xr

where xl is in the first copy of H̄∗(Σn X ) contained in ΩH∗(Σn X )∗2 and xr is in the second. The
degree n −1 map

△τ :ΩH∗(Σn X ) →ΩH∗(Σn X )∗2

is generated by the Whitehead bracket.

Proof. The products on Ω (H∗ (Σn X )) and H∗ (ΩX ) coincide and in the latter case is induced by
the associative loop composition. Examining the diagram 6.6.3, we see that, for each µ ∈Dn(k),
the induced map is a map of associative algebras. Since the homology of the loop space precisely
coincides with the cobar construction of the homology, and the same is true for the relationship
between the coproduct of associative algebras and the loop space of the wedge sum, we deduce
the desired factorisation and the fact that it is a morphism of operads follows from Proposition
6.6.6.

We directly compute the map (6.3). The cup coproduct on the homology of suspensions is
primitive , so it follows that Ω (H∗ (Σn X )) = T

(
H̄∗

(
Σn−1X

))
where T (−) is the tensor algebra. The

homology H∗ (Dn (k)) along representatives for each class are known and have been computed
in [79]. We therefore need only compute the map on these representatives. We therefore need
only compute the map on the two generators in H∗(Dn(2)) = H∗

(
Sn−1

)
. It is trivial to check that

µ ∈ H∗(Dn(2))0 coincides with the cup product. Finally to compute the map corresponding to
τ ∈ H∗(Dn(2))n−1 we apply the Milnor-Moore theorem to the following result from [32] The degree
n −1 map

πi
(
Sn)→πi+n−1

(
Sn ∨Sn)

induced by the fundamental class of Dn (2) = Sn−1 is the Whitehead bracket.

We remark at this point that the delooping can be iterated n-times on n-fold suspensions. We
conclude this section by illustrating with an example of the n-sphere.

Example 6.6.10. Using the Serre spectral sequence, it is straightforward to show that H∗
(
Ω

(
(Sn)∨k

))
is the free associative algebra generated by k variables

H∗
(
Ω

((
Sn)∨k

))
=Q〈x1, . . . , xk〉

where |xi | = n −1. and where each generator is the desuspension of the fundamental class of one
of the copies of Sn . We describe the Poisson coalgebra structure on the degree 0 coassociative
comultiplication △µ and the degree n −1 coLie cobracket △τ. It follows from Proposition 6.6.9
that these are as follows:

△µ :Q〈x〉 = H∗
(
ΩSn)→ H∗

(
Ω

(
Sn ∨Sn))=Q〈a,b〉

x 7→ a +b

and
△τ :Q〈x〉 = H∗

(
ΩSn)→ H∗

(
Ω

(
Sn ∨Sn))=Q〈a,b〉

x 7→ ab −ba.
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6.7 Application: operations on the Hochschild homology
and cotangent complex

In this section, as an application of the theory from the previous sections, we construct operations
solving the Deligne conjecture on the Hochschild chain complex.

6.7.1 The En-structure on the Hochschild homology

When X =ΣnY is a n-fold suspension, the Hochschild chains carry an En-structure that gener-
alises the usual cup coproduct on Hochschild homology.

Theorem 6.7.1. Let X =ΣnY . Then for each E -algebra A, the Hochschild chain complex is an En-
coalgebra and the Hochschild homology H H X∗ (A, A) is an Poisn-coalgebra with trivial n-Poisson
bracket.

Proof. First we observe that X . Using the HKR theorem, it suffices to exhibit a coalgebra structure
on

(
Sym(H∗ (X )⊗V ) ,dX

)
. First, there is an obvious map

µ :
(
Sym

(
H∗

(
X ∨k

)
⊗V

)
,dX

)
=

(
Sym

(
H∗ (X )⊕k ⊗V

)
,dX

)
→ (

Sym(H∗ (X )⊗V ) ,dX
)⊗k

The coalgebra structure from Proposition 6.6.1 therefore extends to an En-structure on the
cotangent complex as desired. The triviality of the Poisson bracket on H∗ (X ) observed in Example
6.6.2 then implies the triviality of the Poisson cobracket on the Hochschild homology.

6.7.2 The En+1-structure and the higher Deligne conjecture

The Deligne conjecture states that the natural En-structure on the Hochschild chain complex
can be extended to an En+1-structure. Indeed this is strongly suggested by the vanishing of the
Poisson bracket in the last theorem. The methods of Section (6.6) enables us to concretely write
this down on the cotangent complex

(
Sym(H∗ (ΣnY )⊗V ) ,dX

)
. Indeed it suffices to construct a

homotopy Poisson structure, since En is formal.

Theorem 6.7.2. Let X =ΣnY be an n-fold suspension. Then the cotangent complex(
Sym(H∗ (X )⊗V ) ,dX

)
is, up to homotopy, a coalgebra over Poisn+1. The associative structure is given by the map

△µ :
(
Sym(H∗ (X )⊗V ) ,dX

)→ (
Sym(H∗ (X )⊗V ) ,dX

)⊗ (
Sym(H∗ (X )⊗V ) ,dX

)
which is given on the generators H∗ (X )⊗ v by

x ⊗ v 7→ (xl ⊗ v)⊗1+1⊗ (xr ⊗ v)

and is extended as an algebra map.

Proof. We first do the arity 2 case for illustrative purposes. Recall from the proof of Lemma 6.5.2

that the cotangent complex is a quotient of
⊕∞

k=1 H∗ (X )⊗k ⊗ (
Sym(V ) ,d

)⊗k . Then by Proposition
6.6.9 for each k, there is a degree n map

fk : H∗ (X )⊗k → (
H∗ (X )⊕2)⊗(k+1)
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given by restricting the map Poisn(2)⊗T
(
s−1H∗ (X )

) → T
(
s−1H∗ (X )⊕2

)
to to the k-fold tensor

product in the free associative algebra and forgetting the desuspensions. There is also a map sk :(
Sym(V ) ,d

)⊗k → (
Sym(V ) ,d

)⊗(k+1) given by inserting the unit 1 in the (k +1)th place. Consider

Fk : H∗ (X )⊗k ⊗ (
Sym(V ) ,d

)⊗k fk⊗sk−−−−→ (
H∗ (X )⊕2)⊗(k+1) ⊗ (

Sym(V ) ,d
)⊗(k+1) .

One can check that, since its image is symmetric in each factor of H∗ (X ), that the direct sum⊕∞
i=1 Fi descends to cotangent complexes on both sides. The coalgebra map then follows from

postcomposing with the map

µ2 :
(
Sym

(
H∗ (X )⊕2 ⊗V

)
,dX

)→ (
Sym(H∗ (X )⊗V ) ,dX

)⊗2

The arity i case, for i > 2 is constructed similarly. The difference is that the map fk will now be
the following

fk : H∗ (X )⊗k →
(
H∗ (X )⊕i

)⊗(k+i−1)

and the map sk will be given by inserting the identity i times.

6.8 Appendix: Coendomorphism operads in the∞-category
of coassociative coalgebras

In this appendix, we define a version of the coendomorphism operad that takes into account
∞-morphisms.

6.8.0.1 Motivation

The usual coendomorphism operad CoEnd(X ) of a chain complex X is essentially a book-keeping
method. Roughly, it remembers every chain morphism between X and its various powers X ⊗n ,
and every ‘operadic gluing’ of such maps. Then an operadic morphism from some operad ∓ to
CoEnd(X ) picks out a subcollection of these maps that glue together to form a ∓-algebra on X .
In this appendic, we define a very similar object CoEndAss∞ (X ). There are three key differences.
Firstly, instead of remembering maps between X and X ⊗n , we are going to remember maps
between X and the coproduct X ⊕n . Secondly, we are only going to remember maps that are
compatible with some pre-existing coassociative-coalgebra structure on X . Lastly, it will not only
encode the maps themselves, but also the higher structure - those homotopies between them. It
is worth noting that this approach only works rationally because of the dependence on a strictly
commutative model for the cochains on the n-simplex.

6.8.0.2 Construction of the coendomorphism operad

Observation 6.8.1. There is always a tensor product

⊗ :Com-alg×Ass-alg →Ass-alg

and, for all X ,Y ∈Ass-alg and X ∈Com-alg, there is a natural isomorphism

HomAss-alg (A, X ⊗B) ∼= HomX−mod ,Ass-alg (X ⊗ A, X ⊗B)

181



Here, HomX−mod ,Ass-alg (−,−) is the space of Ass-alg morphisms that are also left X -module

morphisms.

Our next step is to describe the S-module structure of CoEndAss∞ (X ). Here we use the
standard language of Koszul duality to describe Ass∞-coalgebra morphisms.

Definition 6.8.2. Let C be a chain complex equipped with the trivial compatible Ass∞-coalgebra
structure. The Ass∞-coendomorphism operad of C , CoEndAss∞ (C ) is the simplicial set with arity
k component

CoEndAss∞ (C ) (k)∗ := MapAss-alg

(
Ω (C ) , APL

(△∗)⊗Ω (C )∗k
)

Here Ω(−) is the usual cobar construction. The symmetric action is given by permuting factors in
the wedge product.

Our final step is to describe the operad structure on the simplicial set CoEndAss∞ (C ).

Definition 6.8.3. The composition maps in CoEndAss∞ (C ) are defined as follows. We have

◦ : CoEndAss∞ (C ) (k)n×CoEndAss∞ (C ) (i1)n×·· ·×CoEndAss∞ (C ) (ik )n → CoEndAss∞ (C ) (i1 +·· ·+ ik )n(
f , f1, . . . fk

) 7→ F

where F is defined to be the composition

Ω (C )
f−→ APL

(△n)⊗Ω (C )∗k f1∗ f2∗···∗ fk−−−−−−−−→ APL
(△n)⊗Ω (C )∗(i1+···+ik )

Here
f1 ∗ f2 ∗·· ·∗ fk : APL

(△n)⊗Ω (C )∗k → APL
(△n)⊗Ω (C )∗(i1+···+ik )

is the extension of the following associative algebra morphism

Ω (C )∗k f1⊗ f2⊗···⊗ fk−−−−−−−−→
k⊗

l=1

(
APL

(△n)⊗Ω(
C⊕il

))
−→ APL

(△n)⊗Ω (C )∗(i1+···+ik )

to APL (△n)−mod ,∓!-alg morphism. The second arrow, which is an inclusion, comes from the
inclusion of the tensor product into the coproduct.

Proposition 6.8.4. The object CoEndAss∞ is an operad in simplicial sets.

Proof. The only non-trivial verification is that the operadic composition maps are associative.
This follows from the commutativity of APL along with the associativity of the coproduct.

Remark 6.8.5. As we did previously with the Barratt-Eccles operad, we regard CoEndAss∞ (C ) as
an operad in chain complexes by applying the singular chains functor.

Remark 6.8.6. Our definition of a coendomorphism operad in the ∞-category of coassocia-
tive coalgebras extends to a definition of a coendomorphism operad in the ∞-category of P -
coalgebras for any Koszul operad P . This construction is functorial in the operad.
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