The Category of Quasi-Parabolic Coherent Sheaves

Daniel Mulcahy Peter Phelan Oisín Flynn-Connolly

August 3, 2017

The University of Dublin

Contents

1	Introduction	1
2	Preliminaries	1
3	Properties of torsion pairs	2
4	The left heart construction	5
5	Application to vector bundles	5
6	Acknowledgements	7

1 Introduction

A (quasi-)parabolic vector bundle (over an algebraic curve X) with lengths $\{w_p\}_{p \in X}$ is a vector bundle with equipped with a filtration of the fibre E_p :

$$E_p \supset E_p^1 \supset E_p^2 \dots \supset E_p^{w_p}$$

for each $p \in X$, with $w_p = 0$ for all but finitely many p.

The category of parabolic vector bundles over X is not abelian in the following sense (but it is quasi-abelian as will be explained later). An additive category is said to be *abelian* if all kernels and cokernels exist, and images are isomorphic to coimages.

We can construct an abelian envelope of the category of parabolic vector bundle $\operatorname{PVec}_w(X)$ in two different ways. Firstly, we can extend the concept of parabolic vector bundles to realm of coherent sheaves. A (quasi-) parabolic coherent sheaf F with lengths $\{w_p\}_{p \in X}$ is, for each $p \in X$, a sequence of sheaves [1]

$$F^{(p,0)} \to F^{(p,1)} \to F^{(p,2)} \to \dots \to F^{(p,w_p-1)} \to F^{(p,0)} \otimes O(p)$$

One requires that the composition $F^{(p,i)} \to F^{(p,i+w_p)} = F^{(p,i)} \otimes O(p)$ is canonical for all $0 \le i < w_p$ and that $\forall p, q \in X, F^{(p,0)} = F^{(q,0)}$.

The category $\operatorname{PCoh}_w(X)$ of such objects is abelian, and we can identify locally free parabolic coherent sheaves with parabolic vector bundles.

The other way to find an abelian envelope for $\operatorname{PVec}_w(X)$ is Schneiders' construction of the left heart of a quasi-abelian category.

Our aim was to show that these two approaches yield equivalent categories. This was already known in the case of ordinary coherent sheaves and vector bundles.

2 Preliminaries

Definition 2.1. An additive category \mathcal{A} is called *quasi-abelian* if it has kernels, cokernels, the pushout of a strict monomorphism is a strict monomorphism and the pullback of a strict epimorphism is a strict epimorphism.

Definition 2.2. We say that an ordered pair of full categories $(\mathcal{T}, \mathcal{F})$ in an abelian category \mathcal{A} is a *torsion pair* if:

- $\operatorname{Hom}_{\mathcal{A}}(T, F) = 0$ for all $T \in \mathcal{T}$ and $F \in \mathcal{F}$.
- $\forall X \in A, \exists T \in \mathcal{T}, F \in \mathcal{F}$ such that we have an exact sequence

 $0 \longrightarrow T \longrightarrow X \longrightarrow F \longrightarrow 0$

In this case, \mathcal{T} and \mathcal{F} are, respectively, called the torsion and torsion-free components of the torsion pair.

Definition 2.3. A torsion pair $(\mathcal{T}, \mathcal{F})$ in \mathcal{A} is called *cotilting* if $\forall X \in \mathcal{A}$, there exists $F \in \mathcal{F}$ with an epimorphism from F to X.

Definition 2.4. A (quasi-)parabolic vector bundle (over an algebraic curve X) with lengths $\{w_p\}_{p \in X}$ is a vector bundle with equipped with a filtration of the fibre:

$$E_p \supset E_p^1 \supset E_p^2 \cdots \supset E_p^{w_p}$$

for each $p \in X$. with $w_p = 0$ for all but finitely many p.

Definition 2.5. A (quasi-) parabolic coherent sheaf F with lengths $\{w_p\}_{p \in X}$ is, for each $p \in X$, a sequence of sheaves [1]

$$F^{(p,0)} \to F^{(p,1)} \to F^{(p,2)} \to \dots \to F^{(p,w_p-1)} \to F^{(p,0)} \otimes O(p)$$

One requires that the composition $F^{(p,i)} \to F^{(p,i+w_p)} = F^{(p,i)} \otimes O(p)$ is canonical for all $0 \le i < w_p$ and that $\forall p, q \in X, F^{(p,0)} = F^{(q,0)}$.

Definition 2.6. A morphism in the category of parabolic vector bundles is a morphism of vector bundles such that the induced map on fibres carries E_p^i into F_p^i for all $0 \le i \le w_p$.

Definition 2.7. A morphism in the category of parabolic coherent sheaves is a collection of morphisms $F^{(p,i)} \to G^{(p,i)}$ such that the resulting diagrams commute.

3 Properties of torsion pairs

Let $(\mathcal{T}, \mathcal{F})$ be a torsion pair in an abelian category \mathcal{A} .

Lemma 3.1. For all $X \in \mathcal{A}$ the short exact sequence

 $0 \longrightarrow T \longrightarrow X \longrightarrow F \longrightarrow 0$

with $T \in \mathcal{T}$ and $F \in \mathcal{F}$ is unique up to isomorphism.

Proof. Given $X \in \mathcal{A}$, suppose there are two such sequences. Then

with $T, T' \in \mathcal{T}$ and $F, F' \in \mathcal{F}$. Then $T' \to F$ is the zero morphism so $g \circ f' = 0$. So f' factors through the ker(g) = f. Similarly, f factors through f'. So $f' \circ \alpha_1 = f$ where $\alpha_1 : T \to T'$ and $f \circ \alpha_2 = f'$ where $\alpha_2 : T \to T'$. Then $f \circ \alpha_2 \circ \alpha_1 = f$, so $\alpha_1 \circ \alpha_2 = \mathrm{Id}_T$ as f is monomorphic. Similarly, $\alpha_2 \circ \alpha_1 = \mathrm{Id}_{T'}$. So $T \cong T'$. Thus

 $g' \circ f = 0$ which implies g' factors through g. So ϕ exists. Applying the Five Lemma, we see ϕ is an isomorphism.

Lemma 3.2. Suppose $X \in \mathcal{A}$. If $Hom(T, X) = 0 \ \forall T \in \mathcal{T}$ then $X \in \mathcal{F}$.

Proof. We have

$$0 \longrightarrow T \longrightarrow X \longrightarrow F \longrightarrow 0$$

for $T \in \mathcal{T}$ and $F \in \mathcal{F}$. Therefore T = 0 implying $X \cong F \in \mathcal{F}$.

Lemma 3.3. \mathcal{F} is closed under subobjects.

Proof. Suppose $X \hookrightarrow F \in \mathcal{F}$. Then any morphism from \mathcal{T} to X extends to F. Thus $\operatorname{Hom}(T, X) = 0 \ \forall T \in \mathcal{T}$. By Lemma 3.2, $X \in \mathcal{F}$.

Lemma 3.4. \mathcal{F} is closed under extensions.

Proof. Let

$$0 \longrightarrow F_1 \xrightarrow{\alpha} X \xrightarrow{f} F_2 \longrightarrow 0$$

for $F_1, F_2 \in \mathcal{F}$. There exists $T \in \mathcal{T}$ and $F_3 \in \mathcal{F}$ such that:

$$0 \longrightarrow T \xrightarrow{\beta} X \longrightarrow F_3 \longrightarrow 0$$

Now $T \to F_2$ is the zero morphism so $f \circ \beta = 0$. So β factors through ker $(f) = \alpha$. Now Hom $(T, F_1) = 0$ which implies $\beta = 0$ and thus $X \cong F_3$. \Box

Lemma 3.5. \mathcal{F} has cokernels.

Proof. For a given morphism α in \mathcal{F} denote its cokernel in \mathcal{A} by Q. Then we have:

 $0 \longrightarrow T \longrightarrow Q \longrightarrow F \longrightarrow 0$

where $T \in \mathcal{T}$ and $F \in \mathcal{F}$.

Verifying that F is $coker(\alpha)$ in \mathcal{F} is straightforward.

Lemma 3.6. The pullback of a strict epimorphism in \mathcal{F} is a strict epimorphism.

Proof. Let $f : B \to A$ and $g : C \to A$ in \mathcal{F} with f a strict epimorphism. Then f is the cokernel of Ker $f \to B$ in \mathcal{F} . Take the pullback P of f and g in \mathcal{A}

$$\operatorname{Ker} \bar{f} \xrightarrow{\bar{k}} P \xrightarrow{\bar{f}} C \\ \downarrow^{\bar{g}} \qquad \downarrow^{g} \\ \operatorname{Ker} f \xrightarrow{k} B \xrightarrow{f} A$$

Consider the kernels (in \mathcal{A}), Ker \overline{f} of \overline{f} and Kerf of f. [5] Since \mathcal{A} is abelian we know that \overline{f} is monic and Ker $\overline{f} \cong$ Kerf with $k = \overline{g} \circ \overline{k}$

Since the kernel of f is the same in \mathcal{A} and \mathcal{F} , Ker $\overline{f} \cong$ Ker $f \in \mathcal{F}$ Thus the exact sequence:

$$0 \longrightarrow \operatorname{Ker} \mathcal{F} \xrightarrow{\overline{k}} P \xrightarrow{f} C \longrightarrow 0$$

with Ker \mathcal{F} and C in \mathcal{F} implies $P \in \mathcal{F}$, as \mathcal{F} is closed under extensions. Clearly, (\bar{f}, \bar{g}) is the pullback of (f, g) in \mathcal{F} , and \bar{f} is the cokernel of \bar{k} in \mathcal{F} and is therefore a strict epimorphism. \Box

Lemma 3.7. If f is a strict monomorphism, then the cokernel coker f in \mathcal{A} (Coker $_{\mathcal{A}}$ f) is isomorphic to the cokernel coker f in \mathcal{F} (Coker $_{\mathcal{F}}$ f).

Proof.

We know f is the kernel of $B \to \operatorname{Coker}_{\mathcal{F}} f$ which is epimorphic as the composition $\phi \circ c$ of epimorphic maps, so the bottom row is exact. Applying the Five Lemma, we see ϕ is an isomorphism. \Box

Lemma 3.8. The pushout of a strict monomorphism in \mathcal{F} is a strict monomorphism.

Proof. Let $f : A \to B$, $g : A \to C$ in \mathcal{F} with f a strict monomorphism in \mathcal{F} . Then f is a monomorphism in \mathcal{A} as its kernel is the same as in \mathcal{F} . Then f is the kernel of $C \to \operatorname{Coker}_{\mathcal{F}} f$ in \mathcal{F} , and $\operatorname{Coker}_{\mathcal{F}} f$ is the cokernel of f in \mathcal{A} . Take the pushout P in \mathcal{A} of f and g as in the diagram:

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} & B & \stackrel{c}{\longrightarrow} & \operatorname{Coker} f \\ & & & & \downarrow^{\bar{g}} \\ Q & & \stackrel{\bar{f}}{\longrightarrow} & P & \stackrel{\bar{c}}{\longrightarrow} & \operatorname{Coker} \bar{f} \end{array}$$

Consider the cokernel Coker \overline{f} of \overline{f} in \mathcal{A} . As \mathcal{A} is abelian we know \overline{f} is monic and Coker $\overline{f} \cong$ Coker f with $c = \overline{c} \circ \overline{g}$. Therefore we have the exact sequence

$$0 \longrightarrow C \xrightarrow{\bar{f}} P \xrightarrow{\bar{c}} \operatorname{Coker} \bar{f} \longrightarrow 0$$

with C and Coker $\overline{f} \cong$ Coker $f \in \mathcal{F}$. Thus $P \in \mathcal{F}$, and clearly $(\overline{f}, \overline{g})$ is the pushout of (f, g) in \mathcal{F} .

Theorem 3.9. \mathcal{F} is a quasi-abelian category.

Proof. That \mathcal{F} is an additive category is trivial. \mathcal{F} has kernels by Lemma 3.3. \mathcal{F} has cokernels by Lemma 3.5. The pushout of a strict monomorphism in \mathcal{F} is a strict monomorphism by Lemma 3.8. The pullback of a strict epimorphism in \mathcal{F} is a strict epimorphism by Lemma 3.6.

Lemma 3.10. Let $(\mathcal{T}, \mathcal{F})$ be a torsion pair in \mathcal{A} . There is a functor $t : \mathcal{A} \to \mathcal{T}$ whose object function takes $X \mapsto T$ with $0 \longrightarrow T \longrightarrow X \longrightarrow F \longrightarrow 0$ exact in $\mathcal{A}, F \in \mathcal{F}$ and $T \in \mathcal{T}$.

Proof. Let t(X) = T where $0 \longrightarrow T \longrightarrow X \longrightarrow F \longrightarrow 0$ is the unique (up to isomorphism) exact sequence in \mathcal{A} with $F \in \mathcal{F}$ and $T \in \mathcal{T}$. Let $\phi: X \to X'$ in \mathcal{A} . We have

 $f' \circ \phi \circ g = 0$ implies $\phi \circ g$ factors through g' as g' is the kernel of f'. Thus $\phi \circ g = g \circ t(\phi)$ and $t(\phi)$ is unique. Uniqueness and the commutativity of:

implies $t(\phi' \circ \phi) = t(\phi') \circ t(\phi)$

Remark: $t(\cdot)$ is right adjoint to the inclusion functor $\mathcal{F} \to \mathcal{A}$.

4 The left heart construction

We will use without proof the following result of Schneider.

Theorem 4.1. [2] Let \mathcal{E} be a quasi-abelian category. Let \mathcal{A} be an abelian category with the canonical inclusion $J : \mathcal{E} \to \mathcal{A}$. Then there exists an abelian category $\mathcal{LH}(\mathcal{E})$. Suppose the functor J is fully faithful and that:

 $X \to J(F)$

(a) For any monomorphism

of \mathcal{A} there is an object F' of \mathcal{E} and an isomorphism

$$X \simeq J(F'),$$

(b) For any object X of A, there is an epimorphism

 $J(F) \to X$

where F is an object of \mathcal{E}

Then, J extends to an equivalence of categories:

 $\mathcal{LH}(\mathcal{E}) \approx \mathcal{A}$

Theorem 4.2. If $(\mathcal{T}, \mathcal{F})$ is a cotilting torsion pair in an abelian category \mathcal{A} then $\mathcal{A} \approx \mathcal{LH}(\mathcal{F})$

Proof. We verify the conditions of Theorem 4.1 for $\mathcal{E} = \mathcal{F}$ and J the embedding of \mathcal{F} into \mathcal{A} . \mathcal{F} is quasi-abelian by Theorem 3.9. It is obvious that J is fully faithful. By Lemma 3.4, F is closed under extensions, and therefore satisfies condition (a). Condition (b) is exactly that $(\mathcal{T}, \mathcal{F})$ is cotilting.

5 Application to vector bundles

Lemma 5.1. Let $F \in Coh(X)$. Then $t(F \otimes O(p)) \cong t(F) \otimes O(p)$

Proof. Let $S : \operatorname{Coh}(X) \to \operatorname{Coh}(X)$ be the functor $F \mapsto F \otimes O(p)$. Let $S^{-1}(F) = F \otimes O(-p)$. Then $S^{-1}(S(F)) \cong F \cong S(S^{-1}(F))$. Let T be a torsion coherent sheaf. Clearly $T \otimes O(p)$ is also torsion so $S(\mathcal{T}) \subset \mathcal{T}$. Similarly $S^{-1}(\mathcal{T}) \subset \mathcal{T}$ so $S^{-1}(S(\mathcal{T})) = \mathcal{T} \subset S(\mathcal{T})$. Therefore $S(\mathcal{T}) = \mathcal{T}$. $X \in \mathcal{F} \Leftrightarrow \operatorname{Hom}(T, X) = 0 \ \forall T \in \mathcal{T} \Leftrightarrow \operatorname{Hom}(S(T), S(X)) = 0 \ \forall T \in \mathcal{T}$ by the invertibility of $S \Leftrightarrow$

 $\operatorname{Hom}(T, S(X)) = 0 \ \forall T \in \mathcal{T} \text{ as } S(\mathcal{T}) = \mathcal{T} \Leftrightarrow S(X) \in \mathcal{F}.$ Therefore $S(\mathcal{F}) = \mathcal{F}.$ Let $X \in \mathcal{A}$ and consider an exact sequence

 $0 \longrightarrow t(X) \longrightarrow X \longrightarrow F \longrightarrow 0$

with $t(X) \in \mathcal{T}$ and $F \in \mathcal{F}$

S is an equivalence of categories and therefore exact, giving

$$0 \longrightarrow S(t(X)) \longrightarrow S(X) \longrightarrow S(F) \longrightarrow 0$$

with $S(t(X)) \in \mathcal{T}$ and $S(F) \in \mathcal{F}$.

So the uniqueness of the above sequence implies $S(t(X)) \cong t(S(X))$.

Theorem 5.2. The categories $\operatorname{PTCoh}_{w}(X)$ of parabolic torsion coherent sheaves on X and $\operatorname{PVec}_{w}(X)$ of parabolic vector bundles on X form a torsion pair in $\operatorname{PCoh}_{w}(X)$

Proof. Let $T^{\bullet} \in \operatorname{PTCoh}_w(X)$ and $F \in \operatorname{PVec}_w(X)$. Then $T^{(p,i)} \in \operatorname{TCoh}_w(X)$ and $F^{(p,i)} \in \operatorname{Vec}(X)$ $\forall i \in \{1, 2, \dots, w_p\}.$ Since $\operatorname{Hom}(T^{(p,i)}, F^{(p,i)}) = 0 \ \forall p \in X \text{ and } 0 \leq i \leq w_p \text{ it is obvious that there are no nontrivial}$

morphisms from T^{\bullet} to F^{\bullet} . So $\operatorname{Hom}(\operatorname{PTCoh}_w, \operatorname{PVec}_w) = 0$.

Let $(F^{(p,i)})_{p \in X}^{i \leq w_p} \in \operatorname{PCoh}(X)$ Let $T^{(p,i)} = t(F^{(p,i)})$ be the torsion component of $F^{(p,i)}$. For each pthis induces a commutative diagram.

As $t(F \otimes O(p)) \cong t(F) \otimes O(p)$ and t() is a functor, the top row of this diagram is a parabolic structure of t(F) at p.

Thus $t(F^{\bullet}) := T^{(p,i)}$ is a parabolic torsion coherent sheaf. As cokernels are taken componentwise in PCoh(X)

$$F^{\bullet}/t(F^{\bullet}) = F^{(p,i)}/t(F^{(p,i)})$$

and by definition of $t(F^{(p,i)})$ we have exact sequences:

$$0 \longrightarrow t(F^{(p,i)}) \longrightarrow F^{(p,i)} \longrightarrow F^{(p,i)}/t(F^{(p,i)}) \longrightarrow 0$$

with $F^{(p,i)}/t(F^{(p,i)}) \in \operatorname{Vec}(X)$, giving the exact sequence:

$$0 \longrightarrow t(F^{\bullet}) \longrightarrow F^{\bullet} \longrightarrow F^{\bullet}/t(F^{\bullet}) \longrightarrow 0$$

and $t(F^{\bullet}) \in \operatorname{PTCoh}_w(X), \ F^{\bullet}/t(F^{\bullet}) \in \operatorname{PVec}_w(X)$

Theorem 5.3. Let $(F^{(p,i)})_{p\in S}^{1\leq i\leq w_p} \in \operatorname{PCoh}(X)$. Then there exists an epimorphism $E^{\bullet} \twoheadrightarrow F^{\bullet}$ with $E^{\bullet} \in \operatorname{PCoh}(X)$. $PVec_w(X)$

Proof. We consider first only $F^{\bullet} \in PCoh(X)$ with parabolic structure only at one point p. We know there exists an epimorphism $E_0 \in \operatorname{Vec}(X)$ with $f_0: E_0 \twoheadrightarrow F^0$. Then we obtain the following diagram

where the commutativity of the final square follows from the commutativity of:

$$E_{0} \xrightarrow{n_{E}} E_{0} \otimes O(p)$$

$$\downarrow_{f_{0}} \qquad \qquad \downarrow_{f_{0} \otimes id_{O(p)}}$$

$$F^{0} \xrightarrow{n_{F}} F^{0} \otimes O(p)$$

where n_E and n_F are natural morphisms. Denote by $F^{\bullet}[1]$ the shifting of F^{\bullet} by 1:

$$F^1 \longrightarrow F^2 \longrightarrow \cdots \longrightarrow F^0 \otimes O(p) \longrightarrow F^1 \otimes O(p)$$

By the same process we get a morphism $f^{\bullet}: E_1^{\bullet} \to F^{\bullet}[1]$, shifting down to $f^{\bullet}: E_1^{\bullet}[-1] \to F^{\bullet}$. This gives $\tilde{f}_1^{\bullet}: \tilde{E}_1^{\bullet} \to F^{\bullet}$ which is surjective at index 1 of point p. Applying the same process, we set:

$$(\tilde{f}_i^{\bullet}: \tilde{E}_i^{\bullet} \to F^{\bullet})^{0 \le i \le w_p - 1}$$

with \tilde{f}_i surjective onto F^i

Therefore, taking the direct sum we get:

$$d: \bigoplus_{i=0}^{w_p-1} \tilde{E}_i^{\bullet} \longrightarrow F^{\bullet}$$

giving the required epimorphism. This generalises trivially when we have parabolic structure at more than one point. $\hfill \Box$

Theorem 5.4. The category $\operatorname{PVec}_{w}(X)$ is quasi-abelian and $\mathcal{LH}(\operatorname{PVec}_{w}(X))$ is equivalent to the category $\operatorname{PCoh}_{w}(X)$.

Proof. By Theorem 5.2, $(\operatorname{PTCoh}_w(X), \operatorname{PVec}_w(X))$ form a torsion pair in the abelian category $\operatorname{PCoh}_w(X)$. This implies, by Theorem 3.9, that $\operatorname{PVec}_w(X)$ is quasi-abelian. By Theorem 5.3, $(\operatorname{PTCoh}_w(X), \operatorname{PVec}_w(X))$ is cotilting. Thus, by Theorem 4.2, $\mathcal{LH}(\operatorname{PVec}_w(X)) \approx \operatorname{PCoh}_w(X)$

6 Acknowledgements

We would like to thank our supervisor - Professor Sergey Mozgovoy - for all his help and assistance during our project. His help made this all possible.

We would also like to thank our sponsors, the Hamilton Mathematical Trust.

References

- [1] Jyun-Ao Lin, Spherical Hall algebras of a weighted projective curve, (2014), arXiv:1410.0896.
- [2] Jean-Pierre Schneiders, Quasi-abelian categories and sheaves, Mm. Soc. Math. Fr. (N.S.) 1999, no. 76, vi+134 pp.
- [3] A. Bondal and M. van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1–36, 258.
- [4] Jochen Heinloth, Coherent sheaves with parabolic structure and construction of Hecke eigensheaves for some ramified local systems, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 7, 2235–2325 (2005).
- [5] Saunders MacLane. Categories for the working mathematician. Graduate Texts in Mathematics, Vol. 5. Springer-Verlag, New York-Berlin, (1971)