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1 Introduction

A (quasi-)parabolic vector bundle (over an algebraic curve X) with lengths {wp}p∈X is a vector
bundle with equipped with a filtration of the fibre Ep:

Ep ⊃ E1
p ⊃ E2

p · · · ⊃ Ewp
p

for each p ∈ X, with wp = 0 for all but finitely many p.
The category of parabolic vector bundles over X is not abelian in the following sense (but it is
quasi-abelian as will be explained later). An additive category is said to be abelian if all kernels
and cokernels exist, and images are isomorphic to coimages.
We can construct an abelian envelope of the category of parabolic vector bundle PVecw(X) in
two different ways. Firstly, we can extend the concept of parabolic vector bundles to realm of
coherent sheaves. A (quasi-) parabolic coherent sheaf F with lengths {wp}p∈X is, for each p ∈ X,
a sequence of sheaves [1]

F (p,0) → F (p,1) → F (p,2) → · · · → F (p,wp−1) → F (p,0) ⊗O(p)

One requires that the composition F (p,i) → F (p,i+wp) = F (p,i)⊗O(p) is canonical for all 0 ≤ i < wp
and that ∀p, q ∈ X, F (p,0) = F (q,0).
The category PCohw(X) of such objects is abelian, and we can identify locally free parabolic
coherent sheaves with parabolic vector bundles.
The other way to find an abelian envelope for PVecw(X) is Schneiders’ construction of the left
heart of a quasi-abelian category.
Our aim was to show that these two approaches yield equivalent categories. This was already
known in the case of ordinary coherent sheaves and vector bundles.

2 Preliminaries

Definition 2.1. An additive category A is called quasi-abelian if it has kernels, cokernels, the
pushout of a strict monomorphism is a strict monomorphism and the pullback of a strict epimor-
phism is a strict epimorphism.

Definition 2.2. We say that an ordered pair of full categories (T ,F) in an abelian category A is
a torsion pair if:

• HomA(T, F ) = 0 for all T ∈ T and F ∈ F .

• ∀X ∈ A,∃T ∈ T , F ∈ F such that we have an exact sequence

0 T X F 0

In this case, T and F are, respectively, called the torsion and torsion-free components of the
torsion pair.

Definition 2.3. A torsion pair (T ,F) in A is called cotilting if ∀X ∈ A, there exists F ∈ F with
an epimorphism from F to X.

Definition 2.4. A (quasi-)parabolic vector bundle (over an algebraic curve X) with lengths
{wp}p∈X is a vector bundle with equipped with a filtration of the fibre:

Ep ⊃ E1
p ⊃ E2

p · · · ⊃ Ewp
p

for each p ∈ X. with wp = 0 for all but finitely many p.
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Definition 2.5. A (quasi-) parabolic coherent sheaf F with lengths {wp}p∈X is, for each p ∈ X,
a sequence of sheaves [1]

F (p,0) → F (p,1) → F (p,2) → · · · → F (p,wp−1) → F (p,0) ⊗O(p)

One requires that the composition F (p,i) → F (p,i+wp) = F (p,i)⊗O(p) is canonical for all 0 ≤ i < wp
and that ∀p, q ∈ X, F (p,0) = F (q,0).

Definition 2.6. A morphism in the category of parabolic vector bundles is a morphism of vector
bundles such that the induced map on fibres carries Eip into F ip for all 0 ≤ i ≤ wp.

Definition 2.7. A morphism in the category of parabolic coherent sheaves is a collection of
morphisms F (p,i) → G(p,i) such that the resulting diagrams commute.

3 Properties of torsion pairs

Let (T ,F) be a torsion pair in an abelian category A.

Lemma 3.1. For all X ∈ A the short exact sequence

0 T X F 0

with T ∈ T and F ∈ F is unique up to isomorphism.

Proof. Given X ∈ A, suppose there are two such sequences. Then

0

T ′

0 T X F 0

F ′

0

f ′

f

g′

g

with T, T ′ ∈ T and F, F ′ ∈ F . Then T ′ → F is the zero morphism so g ◦ f ′ = 0. So f ′ factors
through the ker(g) = f. Similarily, f factors through f ′. So f ′ ◦ α1 = f where α1 : T → T ′ and
f ◦ α2 = f ′ where α2 : T → T ′. Then f ◦ α2 ◦ α1 = f, so α1 ◦ α2 = IdT as f is monomorphic.
Similarily, α2 ◦ α1 = IdT ′ . So T ∼= T ′. Thus

T X F 0 0

T ′ X F ′ 0 0

∼= ∼= φ ∼= ∼=

g′ ◦ f = 0 which implies g′ factors through g. So φ exists. Applying the Five Lemma, we see φ is
an isomorphism.

Lemma 3.2. Suppose X ∈ A. If Hom(T,X) = 0 ∀T ∈ T then X ∈ F .

Proof. We have

0 T X F 0

for T ∈ T and F ∈ F . Therefore T = 0 implying X ∼= F ∈ F .
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Lemma 3.3. F is closed under subobjects.

Proof. Suppose X ↪→ F ∈ F . Then any morphism from T to X extends to F . Thus Hom(T,X) =
0 ∀T ∈ T . By Lemma 3.2, X ∈ F .

Lemma 3.4. F is closed under extensions.

Proof. Let

0 F1 X F2 0α f

for F1, F2 ∈ F .
There exists T ∈ T and F3 ∈ F such that:

0 T X F3 0
β

Now T → F2 is the zero morphism so f ◦ β = 0.
So β factors through ker(f) = α. Now Hom(T, F1) = 0 which implies β = 0 and thus X ∼= F3.

Lemma 3.5. F has cokernels.

Proof. For a given morphism α in F denote its cokernel in A by Q. Then we have:

0 T Q F 0

where T ∈ T and F ∈ F .
Verifying that F is coker(α) in F is straightforward.

Lemma 3.6. The pullback of a strict epimorphism in F is a strict epimorphism.

Proof. Let f : B → A and g : C → A in F with f a strict epimorphism. Then f is the cokernel
of Ker f → B in F . Take the pullback P of f and g in A

Ker f̄ P C

Ker f B A

k̄

ḡ

f̄

g

k f

Consider the kernels (in A), Ker f̄ of f̄ and Ker f of f . [5] Since A is abelian we know that
f̄ is monic and Ker f̄ ∼= Ker f with k = ḡ ◦ k̄
Since the kernel of f is the same in A and F , Ker f̄ ∼= Ker f ∈ F
Thus the exact sequence:

0 KerF P C 0k̄ f̄

with KerF and C in F implies P ∈ F , as F is closed under extensions. Clearly, (f̄ , ḡ) is the
pullback of (f, g) in F , and f̄ is the cokernel of k̄ in F and is therefore a strict epimorphism.

Lemma 3.7. If f is a strict monomorphism, then the cokernel coker f in A (CokerA f) is iso-
morphic to the cokernel coker f in F (CokerF f).

Proof.
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0

T

0 A B CokerA f 0 0

0 A B CokerF f 0 0

0

f

∼=

c

∼= φ ∼= ∼=
f

We know f is the kernel ofB → CokerF f which is epimorphic as the composition φ◦c of epimorphic
maps, so the bottom row is exact. Applying the Five Lemma, we see φ is an isomorphism.

Lemma 3.8. The pushout of a strict monomorphism in F is a strict monomorphism.

Proof. Let f : A → B, g : A → C in F with f a strict monomorphism in F . Then f is a
monomorphism in A as its kernel is the same as in F . Then f is the kernel of C → CokerF f
in F , and CokerF f is the cokernel of f in A. Take the pushout P in A of f and g as in the diagram:

A B Coker f

C P Coker f̄

g

f

ḡ

c

f̄ c̄

Consider the cokernel Coker f̄ of f̄ inA. AsA is abelian we know f̄ is monic and Coker f̄ ∼= Coker f
with c = c̄ ◦ ḡ. Therefore we have the exact sequence

0 C P Coker f̄ 0
f̄ c̄

with C and Coker f̄ ∼= Coker f ∈ F . Thus P ∈ F , and clearly (f̄ , ḡ) is the pushout of (f, g) in
F .

Theorem 3.9. F is a quasi-abelian category.

Proof. That F is an additive category is trivial. F has kernels by Lemma 3.3. F has cokernels by
Lemma 3.5. The pushout of a strict monomorphism in F is a strict monomorphism by Lemma
3.8. The pullback of a strict epimorphism in F is a strict epimorphism by Lemma 3.6.

Lemma 3.10. Let (T ,F) be a torsion pair in A. There is a functor t : A → T whose object

function takes X 7→ T with 0 T X F 0 exact in A, F ∈ F and
T ∈ T .

Proof. Let t(X) = T where 0 T X F 0 is the unique (up to isomor-
phism) exact sequence in A with F ∈ F and T ∈ T .
Let φ : X → X ′ in A. We have

0 T X F 0

0 T ′ X ′ F ′ 0

t(φ)

g f

φ

g′ f ′
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f ′ ◦ φ ◦ g = 0 implies φ ◦ g factors through g′ as g′ is the kernel of f ′.
Thus φ ◦ g = g ◦ t(φ) and t(φ) is unique. Uniqueness and the commutativity of:

T X

T X ′

T ′′ X ′′

φ

φ′

implies t(φ′ ◦ φ) = t(φ′) ◦ t(φ)

Remark: t(·) is right adjoint to the inclusion functor F → A.

4 The left heart construction

We will use without proof the following result of Schneider.

Theorem 4.1. [2] Let E be a quasi-abelian category. Let A be an abelian category with the canon-
ical inclusion J : E → A . Then there exists an abelian category LH(E). Suppose the functor J is
fully faithful and that:

(a) For any monomorphism
X → J(F )

of A there is an object F ′ of E and an isomorphism

X ' J(F ′),

(b) For any object X of A, there is an epimorphism

J(F )→ X

where F is an object of E

Then, J extends to an equivalence of categories:

LH(E) ≈ A

Theorem 4.2. If (T ,F) is a cotilting torsion pair in an abelian category A then A ≈ LH(F)

Proof. We verify the conditions of Theorem 4.1 for E = F and J the embedding of F into A. F
is quasi-abelian by Theorem 3.9. It is obvious that J is fully faithful. By Lemma 3.4, F is closed
under extensions, and therefore satisfies condition (a). Condition (b) is exactly that (T ,F) is
cotilting.

5 Application to vector bundles

Lemma 5.1. Let F ∈ Coh(X). Then t(F ⊗O(p)) ∼= t(F )⊗O(p)

Proof. Let S : Coh(X)→ Coh(X) be the functor F 7→ F ⊗O(p). Let S−1(F ) = F ⊗O(−p). Then
S−1(S(F )) ∼= F ∼= S(S−1(F )). Let T be a torsion coherent sheaf. Clearly T ⊗O(p) is also torsion
so S(T ) ⊂ T . Similarly S−1(T ) ⊂ T so S−1(S(T )) = T ⊂ S(T ). Therefore S(T ) = T .
X ∈ F ⇔ Hom(T,X) = 0 ∀T ∈ T ⇔ Hom(S(T ), S(X)) = 0 ∀T ∈ T by the invertibility of S ⇔
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Hom(T, S(X)) = 0 ∀T ∈ T as S(T ) = T ⇔ S(X) ∈ F . Therefore S(F) = F .
Let X ∈ A and consider an exact sequence

0 t(X) X F 0

with t(X) ∈ T and F ∈ F
S is an equivalence of categories and therefore exact, giving

0 S(t(X)) S(X) S(F ) 0

with S(t(X)) ∈ T and S(F ) ∈ F .
So the uniqueness of the above sequence implies S(t(X)) ∼= t(S(X)).

Theorem 5.2. The categories PTCohw(X) of parabolic torsion coherent sheaves on X and
PVecw(X) of parabolic vector bundles on X form a torsion pair in PCohw(X)

Proof. Let T • ∈ PTCohw(X) and F ∈ PVecw(X). Then T (p,i) ∈ TCohw(X) and F (p,i) ∈ Vec(X)
∀i ∈ {1, 2, · · ·wp}.
Since Hom(T (p,i), F (p,i)) = 0 ∀p ∈ X and 0 ≤ i ≤ wp it is obvious that there are no nontrivial
morphisms from T • to F •. So Hom(PTCohw,PVecw) = 0.

Let (F (p,i))
i≤wp

p∈X ∈ PCoh(X) Let T (p,i) = t(F (p,i)) be the torsion component of F (p,i). For each p
this induces a commutative diagram.

t(F ) t(F (p,1)) · · · t(F (p,n−1)) t(F ⊗O(p))

F F (p,1) · · · F (p,n−1) F ⊗O(p)

t(φ(p,0)) t(φ(p,n−1))

φ(p,0) φ(p,n−1)

As t(F ⊗ O(p)) ∼= t(F ) ⊗ O(p) and t() is a functor, the top row of this diagram is a parabolic
structure of t(F ) at p.
Thus t(F •) := T (p,i) is a parabolic torsion coherent sheaf. As cokernels are taken componentwise
in PCoh(X)

F •/t(F •) = F (p,i)/t(F (p,i))

and by definition of t(F (p,i)) we have exact sequences:

0 t(F (p,i)) F (p,i) F (p,i)/t(F (p,i)) 0

with F (p,i)/t(F (p,i)) ∈ Vec(X), giving the exact sequence:

0 t(F •) F • F •/t(F •) 0

and t(F •) ∈ PTCohw(X), F •/t(F •) ∈ PVecw(X)

Theorem 5.3. Let (F (p,i))
1≤i≤wp

p∈S ∈ PCoh(X). Then there exists an epimorphism E• � F • with E• ∈
PVecw(X)

Proof. We consider first only F • ∈ PCoh(X) with parabolic structure only at one point p. We
know there exists an epimorphism E0 ∈ Vec(X) with f0 : E0 � F 0. Then we obtain the following
diagram

E0 E0 · · · E0 E0 ⊗O(p)

F 0 F 1 · · · Fn−1 F 0 ⊗O(p)

f0

∼=

φ0◦f0

∼= ∼= nE

f0⊗idO(p)

φ0
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where the commutativity of the final square follows from the commutativity of:

E0 E0 ⊗O(p)

F 0 F 0 ⊗O(p)

f0

nE

f0⊗idO(p)

nF

where nE and nF are natural morphisms. Denote by F •[1] the shifting of F • by 1:

F 1 F 2 · · · F 0 ⊗O(p) F 1 ⊗O(p)

By the same process we get a morphism f• : E•1 → F •[1], shifting down to f• : E•1 [−1]→ F •.
This gives f̃•1 : Ẽ•1 → F • which is surjective at index 1 of point p.
Applying the same process, we set:

(f̃•i : Ẽ•i → F •)0≤i≤wp−1

with f̃i surjective onto F i

Therefore, taking the direct sum we get:

d :

wp−1⊕
i=0

Ẽ•i F •

giving the required epimorphism. This generalises trivially when we have parabolic structure at
more than one point.

Theorem 5.4. The category PVecw(X) is quasi-abelian and LH(PVecw(X)) is equivalent to the
category PCohw(X).

Proof. By Theorem 5.2, (PTCohw(X),PVecw(X)) form a torsion pair in the abelian category
PCohw(X). This implies, by Theorem 3.9, that PVecw(X) is quasi-abelian.
By Theorem 5.3, (PTCohw(X),PVecw(X)) is cotilting. Thus, by Theorem 4.2, LH(PVecw(X)) ≈
PCohw(X)
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