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Abstract

In this thesis, we describe the simplicial analogue of the coendomor-
phism operad of Moreno-Fernández and Wierstra, and define coalge-
bras in the category of simplicial sets. We show that simplicial n-fold
suspensions are coalgebras up to homotopy over the Barratt-Eccles En–
operad. We also compute an explicit model for the A∞–operad in sim-
plicial sets, and describe the Boardman-Vogt resolution of the Barratt–
Eccles En-operad.

i





Contents

Contents iii

1 Introduction 1
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Chapter 1

Introduction

1.1 Préambule

L’opérade Dn de petits n-disques a été introduit pour la première fois par J.
P. May dans son livre de 1972 The Geometry of Iterated Loop Spaces [22], bien
que cela ait été préfiguré dans les travaux de Stasheff et Boardman-Vogt. Il
avait remarqué que les espaces des lacets itérés n-fois portent une structure
naturelle monoı̈dale (jusqu’à l’homotopie) induite par la concaténation de
lacets. Il a inventé des opérades afin de capturer cette structure sous-jacente,
sans référence à l’espace lui-même. Cette approche a prouvé son utilité
immédiatement, quand il a pu montrer que toute algèbre sur Dn est faible-
ment homotope à un espace de lacets itérés n-fois, un résultat très célèbre
connu sous le nom May’s recognition principle. Depuis lors, cet opérade a
informé beaucoup de progrès en topologie algébrique. Par exemple, on
peut montrer que l’homologie de l’opérade de petits n-disques est l’opérade
de Poisson paramétrée Poisn dans les complexes de chaı̂nes [6]. Cela im-
plique immédiatement que l’homologie des espaces de lacets itérés n-fois
possède non seulement le produit Pontryagin, mais aussi un produit binaire
de degré 1− n appelé le crochet de Browder. Les opérations Dyer-Lashof
et Kudo-Araki sur la cohomologie avec coefficients dans Zp des espaces de
lacets itérés peuvent être construites par des considérations plus complexes.
[9].

Le principe de la dualité de Eckmann-Hilton suggère que les suspensions
itérées devraient posséder également une théorie très sympa. Un nouveau
article de Moreno-Fernández et Wierstra [25] a étudié cela. Leur approche
est, pour chaque espace topologique X, de définir l’opérade de coendomor-
phisme CoEnd(X) de X (voir Definition 2.3.10). Une coalgèbre de l’opérade
P est défini comme une paire (X, ϕ) où X est un espace et ϕ est un mor-
phisme opéradique P → CoEnd(X). Ils montrent que les suspensions itérés
n-fois sont des coalgèbres de Dn et décrivent le double Eckmann-Hilton
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1. Introduction

du crochet de Browder, qui se révèle être une coopération sur le rationnel
groupes d’homotopie.

Dans cette thèse, nous étendons une partie de cette théorie au domaine des
ensembles simpliciaux. En particulier, nous utilisons le foncteur Ex∞ de Kan
pour définir un (petit) opérade de coendomorphisme (voir Definition 5.1.9)
pour tout ensemble simplicial X avec seulement un nombre fini de simplices
non-dégénérées, et nous l’utilisons pour définir les coalgebras comme dans
le dernier paragraphe. Nous établissons que les suspensions simpliciales
itérés n-fois sont des coalgèbres (jusqu’à l’homotopie) de l’opérade En de
Barratt-Eccles (voir Théorème 5.2.1).

Un objectif secondaire de cette thèse est de comprendre la résolution de
Boardman-Vogt. Pour résumer, donné une catégorie de modèle fermée, les
opérades réduites sur elle possèdent souvent une structure de modèle in-
duite (voir Théorème 4.1.12). La résolution Boardman-Vogt (voir Definition
4.3.10) est un foncteur de remplacement cofibrant au sein de cette struc-
ture. Ceci est important parce que en général, nous définissons les algèbres
homotopiques sur une opérade P comme des algèbres ordinaires sur un
remplacement cofibrant de P . La résolution Boardman-Vogt est la manière
la plus générale de le faire, mais elle est normalement très grande et souvent
pas le moyen le plus efficace de le faire. Dans les complexes de chaı̂nes, par
exemple, on préfère normalement travailler avec la résolution Koszul qui est
beaucoup plus petite [12].

Dans la dernière partie du chapitre 4 de cette thèse, nous étudions quelques
exemples de la résolution Boardman-Vogt dans la catégorie des ensembles
simpliciaux. Nous montrons que la composante dans arity n de la résolution
Boardman-Vogt de l’opérade associatif simplicial est constituée de n! copies
disjointes d’un ensemble simplicial de lié à un associahedron. Nous don-
nons également une description explicite de la résolution de Boardman-Vogt
de l’opérade En de Barratt-Eccles.

Il y a deux sujets non standard traités en détail dans ce note. Le premier est
le foncteur Ex∞, étudié pour la première fois par Dan Kan [16] en 1957. Il
nous fournit un foncteur de remplacement de fibrant complètement combi-
natoire dans la structure du modèle Kan-Quillen. Elle permet, entre autres
choses, de définir la structure du modèle de Kan-Quillen la structure du
modèle de Kan-Quillen sans passer aux espaces topologiques ou invoquant
les structures du modèle de Cisinski [26].

Le deuxième sujet spécial est l’opérade En de Barratt-Eccles. C’est un modèle
particulièrement sympa pour la petite opérade de n-disques dans la catégorie
des ensembles simpliciaux. Pour n = ∞, cela a été défini pour la première
fois par Barratt et Eccles [1] en 1974, le cas oú n est fini ayant été étudié pour
la première fois par Smith dans sa thèse de 1981 [29]. Plus célèbre encore, la
version dg-algèbre de cet opérade a été utilisée pour donner une preuve de
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1.1. Préambule

la Deligne conjecture ([23], [3]), qui déclare que la complexe Hochschild d’une
algèbre associative a naturellement la structure d’une algèbre de l’opérade
D2.

La structure de cette thèse

Trois principaux outils techniques sont utilisés dans ce rapport; catégories
de modèles, opérades et ensembles simplicial. Celles-ci sont examinées
brièvement dans les sections 2.1, 2.3 et 3.1 respectivement. Nous supposons
également une certaine familiarité avec les notions élémentaires de topologie
algébrique telles que les complexes CW et les groupes d’homotopie.

Le chapitre 2 de ce note est largement à propos les espaces topologiques
et sert principalement de motivation pour le reste de la thèse. La section
2.1 rappelle la définition et les propriétés de base des catégories de modèles
et définit la structure du modèle sur la catégorie des espaces topologiques.
La section 2.2 rappelle la définition de l’espace et de la suspension de la
lacet topologique et explique pourquoi il s’agit de doubles Eckmann-Hilton.
Il contient également un bref traitement des produits smash et wedge. La
section 2.3 contient un bref aperçu de la théorie de l’opérade, ainsi qu’un exa-
men de la notion de Moreno-Fernández - Wierstra d’une coalgèbre topologique.
La section 2.4 donne un traitement de l’opérade Dn de petits n -disques
Dn et May’s recognition principle, tout en incluant la preuve de Moreno-
Fernández et Wierstra que les suspensions itérés n-fois sont des coalgèbres
sur Dn.

Le chapitre 3 se concentre sur la catégorie des ensembles simpliciaux (et
plus tard sur les opérades). La section 3.1 rassemble les définitions de base.
La section 3.2 définit la structure du modèle sur les ensembles simplici-
aux et étudie l’équivalence Quillen entre Set4 et les espaces topologiques.
Nous fournissons un compte rendu complet du foncteur Ex∞ de Kan dans
la section 3.4. Enfin, dans la section 3.5, nous traitons l’opérade En de
Barratt-Eccles et montrons que sa réalisation géométrique est faiblement ho-
motopique à l’opérade de petits n-disques.

Le chapitre 4 traite de la catégorie modèle d’opérades. La section 4.1 utilise
le principe de transfert pour munir la catégorie d’opérades réduites d’une
catégorie de modèle (suffisamment agréable) avec une structure de modèle.
La section 4.2 rappelle la construction de l’opérade libre. Cela utilise beau-
coup des mêmes idées qui seront utilisées dans la section 4.3, où nous
définissons un foncteur de remplacement des cofibrants, appelé la résolution
Boardman-Vogt, dans la catégorie modèle d’opérades que nous avons con-
struites dans la section 4.1. Enfin, nous concluons le chapitre avec un petit
nombre d’exemples de la résolution Boardman-Vogt. Dans la sous-section
4.1.1, nous voyons comment la résolution Boardman-Vogt de l’opérade as-
sociatif dans la catégorie des espaces topologiques donne naissance aux
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1. Introduction

polytopes de Stasheff. Les sous-sections 4.4.2 et 4.4.3 contiennent nos pre-
miers résultats originaux, quoique faciles, de cette thèse - des descriptions
concrètes des résolutions Boardman-Vogt de l’opérade associatif et de l’opérade
En de Barratt-Eccles dans des ensembles simpliciaux.

Le chapitre 5 contient nos principaux résultats. Dans la section 5.1, nous
trouvons un petit modèle simplicial pour l’opérade de coendomorphisme
de Moreno-Fernández et Wierstra. Dans la section 5.2, nous montrons que
les suspensions simpliciales itérés n-fois sont des coalgèbres sur l’homotopie
opérade En de Barratt-Eccles.
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1.2. Préambule (version anglaise)

1.2 Préambule (version anglaise)

The little n-discs operad Dn was first introduced by J. P. May in his 1972
book The Geometry of Iterated Loop Spaces [22], although it was foreshadowed
in the work of Stasheff and Boardman-Vogt. He had noticed that n-fold
loop spaces carry a natural monoidal (up to homotopy) structure induced
by concatenation of loops. He invented operads in order to capture this
underlying structure without reference to the space itself. This approach
proved its utility immediately, when he was able to show that any algebra
over Dn is weakly homotopic to an n-fold loop space, a famous result known
as May’s recognition principle. Since then, this operad has informed much
progress in algebraic topology. For example, it can be shown that the homol-
ogy of the little n-discs operad is the parameterized Poisson operad Poisn
in chain complexes [6]. This immediately implies that the homology of n-
fold loop spaces possesses not just the Pontryagin product induced by the
concatenation of loops, but also a binary product of degree 1− n called the
Browder bracket. The Dyer-Lashof and Kudo-Araki operations on the mod
p cohomology of iterated loop spaces may be constructed by more complex
considerations [9].

The principle of Eckmann-Hilton duality suggests that that iterated suspen-
sions should possess a similarly rich theory. A recent preprint of Moreno-
Fernández and Wierstra [25] has studied this. Their approach is, for each
topological space X, to define the coendomorphism operad CoEnd(X) (Defi-
nition 2.3.10). A P-coalgebra is defined to be a pair (X, ϕ) where X is a
space and ϕ is an operadic morphism P → CoEnd(X). They show that n-
fold suspensions are Dn-coalgebras and describe the Eckmann-Hilton dual
of the Browder bracket, which turns out to be a cooperation on the rational
homotopy groups.

In this thesis, we extend some of this theory to the realm of simplicial sets.
In particular, we use Kan’s Ex∞ functor to define a small coendomorphism
operad (Definition 5.1.9) for any simplicial set X with only finitely many
non-degenerate simplices, and use this to define coalgebras in the same way
as in the last paragraph. We establish, via model theoretic arguments, that
n-fold simplicial suspensions are coalgebras (up to homotopy) of the Barratt-
Eccles En operad (Theorem 5.2.1).

A secondary goal of this thesis is to understand the Boardman-Vogt reso-
lution. To summarise, given a closed model category, the reduced operads
over it often possess an induced model structure (see Theorem 4.1.12). The
Boardman-Vogt resolution (Definition 4.3.10) is a cofibrant replacement func-
tor within this structure. This is important because in general we define
homotopy algebras over an operad P as ordinary algebras over a cofibrant
replacement of P . The Boardman-Vogt resolution is the most general way
of doing this, but it is normally very large and often not the most efficient
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1. Introduction

way to do things. In chain complexes, for example, one normally prefers to
work with the far smaller Koszul resolution [12].

In the closing section of Chapter 4 of this thesis, we study some examples
of the Boardman-Vogt resolution in the category of simplicial sets. We show
that the arity n component of the Boardman-Vogt resolution of the simplicial
associative operad consists of n! disjoint copies of a simplicial set analogous
to an associahedron. We also give a similarly explicit description of the
Boardman-Vogt resolution of the Barratt-Eccles En-operad.

There are two nonstandard topics given complete expository treatment in
this report. The first of these is the Ex∞ functor, originally studied by Dan
Kan [16] in 1957. It provides us with a completely combinatorial fibrant re-
placement functor in the Kan-Quillen model structure. Among other things,
it allows one to define the Kan-Quillen model structure passing to topologi-
cal spaces or invoking Cisinski model structures [26].

The second special topic is the Barratt-Eccles En operad. This is a particularly
nice model for the little n-discs operad in the category of simplicial sets. For
n = ∞, this was first defined by Barratt and Eccles [1] in 1974, with the finite
n case first studied by Smith in his 1981 PhD thesis [29]. Most famously,
the dg-algebra version of this operad has been used to give a proof of the
Deligne conjecture ([23], [3]), which states that the Hochschild complex of an
associative algebra naturally has the structure of D2-algebra.

The structure of this thesis

There are three major technical tools used in this report; model categories,
operads and simplicial sets. These are briefly reviewed in Sections 2.1, 2.3
and 3.1 respectively. We also assume some familiarity with elementary no-
tions of algebraic topology such as CW-complexes and homotopy groups.

Chapter 2 of this report is broadly themed around topological spaces, and
mainly serves as motivation for the remainder of the thesis. Section 2.1 re-
calls the definition and basic properties of model categories, and defines the
model structure on the category of topological spaces. Section 2.2 recalls
the definition of topological loop space and suspension, and explains why
they are Eckmann-Hilton duals. It also contains a brief treatment of smash
and wedge products. Section 2.3 contains a brief overview of operad theory,
as well as reviewing the Moreno-Fernández–Wierstra notion of a topologi-
cal coalgebra. Section 2.4 gives a treatment of the little n-discs operad Dn
and May’s recognition principle, while also including Moreno-Fernández–
Wierstra’s proof that n-fold suspensions are coalgebras (up to homotopy)
over Dn.

Chapter 3 focuses on the category of simplicial sets (and later the operads
over it). Section 3.1 collates the basic definitions. Section 3.2 defines the
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model structure on simplicial sets and studies the Quillen equivalence be-
tween Set4 and topological spaces. We provide a comprehensive account
of Kan’s Ex∞ functor in Section 3.4. Finally, in Section 3.5, we treat the
Barratt-Eccles En-operad and show that its geometric realization is weakly
homotopic to the little n-discs operad.

Chapter 4 is about the model category of operads. Section 4.1 uses the Trans-
fer Principle to endow the category of reduced operads over a suitably nice
model category with a model structure. Section 4.2 recalls the construction
of the free operad. This uses a lot of the same ideas that shall be used
in Section 4.3, where we define a cofibrant replacement functor, called the
Boardman-Vogt resolution, in the model category of operads we constructed
in Section 4.1. Finally, we conclude the chapter with a small number of ex-
amples of the Boardman-Vogt resolution. In Subsection 4.1.1 we see how the
Boardman-Vogt resolution of the the associative operad in the category of
topological spaces gives rise to Stasheff polytopes. Subsection 4.4.2 and 4.4.3
contain the first original, albeit easy, results of this thesis - concrete descrip-
tions of the Boardman-Vogt resolutions of the associative and Barratt-Eccles
operads in simplicial sets.

Chapter 5 contains our main results. In Section 5.1, we find a small simplicial
model for the coendomorphism operad of Moreno-Fernández and Wierstra.
In Section 5.2, we show that n-fold simplicial suspensions are coalgebras
over the homotopy Barratt-Eccles En-operad.
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Dr. Felix Wierstra for all his patience, support and guidance throughout the
the writing of this thesis. He would also like to thank his supervisor Prof.
Grégory Ginot for all the support and assistance that he provided.
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Chapter 2

Topological Spaces

This chapter is a hodgepodge of preliminaries for the rest of this report.
A major goal of this thesis is to study simplicial (a word that can be read
by the uninitiated as combinatorial) models for operads in topological space.
This chapter is largely about introducing these constructions and methods
in their native habitat and shedding a little light on how they behave there.

We shall begin with a barebones study of model categories. This is the
natural language of homotopy theory and we shall make heavy use of it
throughout this report. The main reason why simplicial sets are useful is
that the category they form in a model theoretic sense is equivalent to the
category of topological spaces up to homotopy; we say it models it.

We shall follow this up with a section defining a few topological construc-
tions. These will include the wedge and smash products, and the suspension
and loop space constructions. In the spirit of brevity, we do not fully explain
the motivation for these constructions, which lie in the theory of spectra.
The reader may however choose to view them as elementary enough to be
of interest in their own right.

Finally, following a review of the definition of an operad, we shall study the
little n-discs operad Dn, the principal protagonist of this report. We shall
see how loop spaces possess a natural Dn-algebra structure. The converse
to this statement is the celebrated recognition principle of J.P. May, which
we shall formally state.

There is a philosophy in modern mathematics that has motivated a lot of
research called Eckmann-Hilton duality. In brief, in homotopy theory we
think of certain ideas as having a natural partner. For example, we have
the following natural pairings: homotopy groups ∼ cohomology groups;
wedge products ∼ direct products; suspensions ∼ loop spaces. Eckmann-
Hilton duality asserts that if all concepts in a given theorem are replaced
with their partner then that theorem should remain true. Dual theorems do
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2. Topological Spaces

not necessarily admit dual proofs, and that is why Eckmann-Hilton duality
remains a philosophy and not a result.

In the closing section, we shall study coalgebras over the little n-discs operad.
Moreno–Fernández and Wierstra recently showed suspensions are examples
of such coalgebras. Eckmann-Hilton duality suggests that this should give
rise to a recognition principle for suspensions, although this remains un-
proven at the current time.

2.1 Model categories

Model categories were originally defined by Dan Quillen [27] to avoid the
set-theoretical issues that arise when passing to the localization of a cate-
gory with respect to some set of its morphisms. As of such, they provide
the natural environment in which to do homotopy theory, where we want to
invert the weak homotopy equivalences (defined below in Example 2.1.4). Clas-
sically, doing this allows us to pass from the space of all topological spaces,
some of which are horrendous to work with, to the well-behaved full sub-
category of CW-complexes. The first goal of this section is to paint a picture
of how this works, by providing the relevant definitions and stating the rel-
evant theorems. Following that, we shall move on to the second goal of this
section, which is to define the correct notion of equivalence for model cate-
gories. This will be important for us in Section 2.2 where we shall see that
topological spaces and simplicial sets both possess model structures that are
equivalent in this sense.

A more comprehensive treatment of the following material may be found in
[8].

Definition 2.1.1 A model category is a category C equipped with the follow-
ing three classes of morphisms.

1. Weak equivalencesW which we will denote by ∼−→.

2. Cofibrations C which we will denote by ↪→. A cofibration that is also a
weak equivalence is called an acyclic cofibration.

3. Fibrations F which we will denote by � . A fibration that is also a
weak equivalence is called an acyclic fibration.

These morphisms satisfy the following five axioms.

1. C contains all small limits and colimits.

2. If it is possible to compose the morphisms f and g, then if any two of
f , g, f ◦ g is in W the third is. This is sometimes called the ‘2-out-of-3’
rule.
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2.1. Model categories

3. If f is a retract of g and g ∈ W (or C or F ) then f ∈ W (or C or F ). In
other words, if we have a commutative diagram

A i→ B r→ A
f ↓ g ↓ f ↓
A′

j−→ B′ t−→ A′

with ri = idA and tj = idA′ such that g is any one of the three classes
of morphism, then f is a member of the same class.

4. Consider the following commutative diagram

A X

B Y

i p

• If i ∈ C and p ∈ W ∩ F (ie. p is an acyclic fibration) then the
dotted lift exists.

• If i ∈ C ∩W (ie. i is an acyclic cofibration) and p ∈ F then the
dotted lift exists.

5. Every morphism f : X → Y admits two factorisations both functorial
in f

X Pf Y∼ X C f Y∼

In other words, every morphism in C has admits two decompositions.
The first is into a fibration followed by an acyclic cofibration, the sec-
ond is into a acyclic fibration followed by a cofibration. Moreover these
decompositions are functorial in the arrow category of C.

Definition 2.1.2 We say that an object X ∈ C is fibrant if its terminal mor-
phism is a fibration and cofibrant if its initial morphism is a cofibration.

Remark 2.1.3 By the fifth model category axiom, given any object X in a
model category it is possible to find both cofibrant and fibrant replacements for
it. A fibrant replacement for X is an object R(X) such that

X R(X) ∗∼

where ∗ is the terminal object in C. Note in particular that R(X) is a fibrant
object that is weakly equivalent to X. A cofibrant replacement is the dual
notion, where we factorise the morphism from the initial object through a
cofibrant object weakly equivalent to X. By carrying out these two proce-
dures consecutively it is possible to find an object that is simultaneously
fibrant, cofibrant and weakly equivalent to X.
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2. Topological Spaces

The first example that we are about to give is very important. It, together
with the Kan-Quillen structure on Set4, will form one of the two major
examples of model categories that we shall see in this report.

Example 2.1.4 [8, Proposition 8.3] In the category Top, a Serre fibration is a
continuous function p : X → Y such that, for all commutative diagrams of
the form

[0, 1]n × {0} X

[0, 1]n × [0, 1] Y.

p

the dotted lift exists. A weak homotopy equivalence is a continuous function
f : X → Y such that, for each n ∈ N, the induced morphism of homotopy
groups f ∗n : πn(X)→ πn(Y) is an isomorphism. We define the Quillen model
structure on Top to have weak homotopy equivalences for weak equivalences,
Serre fibrations for fibrations and inclusions of generalised CW–complexes
for cofibrations. Two facts about this model structure are worth noting.
Firstly, all objects are fibrant. Secondly, every topological space is weakly
(but not necessarily strongly) equivalent to a CW–complex.

Next, we recall what it means to localize a category with respect to some
class of morphisms.

Definition 2.1.5 Let C be a category, and W ⊆ C be a class of morphisms.
A functor F : C → D is said to be the localization functor of C with respect to
W if

• F( f ) is an isomorphism for each f ∈W.

• whenever G : C → D′ is a functor carrying elements of W to isomor-
phisms, there exists a unique functor G′ : D → D′ such that G′F = G.

We normally use the notation C[W−1] to denote D, and call it the localization
of D with respect to W.

The homotopy category of a model category is just its localization with re-
spect to the class of weak equivalences.

Definition 2.1.6 Let (C,W , C,F ) be a model category. The homotopy category
of C is defined as

Ho(C) := C[W−1].

Example 2.1.7 [8, Proposition 8.4] If Top is equipped with the Quillen model
structure, the homotopy category is equivalent to the full subcategory con-
sisting of CW–complexes.
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2.1. Model categories

By itself Definition 2.1.6 is not very useful, and the astute reader has prob-
ably noticed that there is no meaningful reference made to the morphism
classes C and F . We turn now to the more interesting problem of how to
compute such a thing; this requires introducing the notion of a homotopy.
For the rest of this section we will assume that C is a model category.

Definition 2.1.8 A cylinder of A ∈ C is a factorisation

A t A P A
(i0,i1) ∼

of the canonical function A t A→ A into a weak equivalence followed by a
cofibration.

Definition 2.1.9 Let f , g : A → X be two morphisms. A (left) homotopy

between f and g, written f ∼ g, is the data of a cylinder At A
(i0,i1)−−−→ P ∼−→ A

and a function H : P→ X such that H ◦ i0 = f and H ◦ i1 = g.

Example 2.1.10 In the category of topological spaces equipped with the
Quillen model structure, A × I is a natural choice of cylinder. The map
i0 is given by a 7→ (a, 0) for all a ∈ A and similarly i1 is a 7→ (a, 1). In this
way, a left homotopy coincides with the usual idea of a homotopy in Top .

Remark 2.1.11 The notion of a right homotopy between two morphisms also
exists and, in general, is not equivalent to the notion of a left homotopy.
However the only situation that we shall consider in this note is that of the
next lemma. In this very special case, left and right homotopies are the
same.

Lemma 2.1.12 [8, Lemma 4.7] Let A be a cofibrant object and X be a fibrant object.
Then ∼ is an equivalence relation on HomC(A, X).

Theorem 2.1.13 [8, Proposition 5.11] Let πCc f be the category consisting of ob-
jects of C that are both fibrant and cofibrant and which has for morphisms

HomπCc f (A, X) := HomC(A, X)/ ∼ .

Then Ho(C) is equivalent to πCc f .

When we are working with model categories usually the only information
of intrinsic interest is that that exists on the level of homotopy categories.
The correct notion of equivalence therefore is not therefore an equivalence
of categories, but an equivalence of homotopy categories. We are going to
formalise this idea. The first thing to do is to show how some functors on
model categories induce functors on underlying homotopy categories.

Definition 2.1.14 Let C and D be a model categories. Let F : C → D be a
functor and let λC : C→ Ho(C) be the localization functor.

13



2. Topological Spaces

• A left derived functor of F is a functor LF : Ho(C) → D and a natural
transformation α : LF ◦ λC ⇒ F satisfying the following universal
property: for every pair (G : Ho(C) → D, β : G ◦ λC ⇒ F) there
exists a unique natural transformation θ : G → LF such that β is the
composite

G ◦ λ LF ◦ λ Fθ◦λ α

A total left derived functor is a left derived functor of λD ◦ F : C→ D→
Ho(D).

• A right derived functor of F is a functor RF : Ho(C)→ D and a natural
transformation ε : RF ◦ λC ⇒ F satisfying the following universal
property: for every pair (G : Ho(C) → D, σ : G ◦ λC ⇒ F) there
exists a unique natural transformation θ : G → RF such that σ is the
composite

F RF ◦ λC G ◦ λ
ε θ◦λC

A total right derived functor is a right derived functor of λD ◦ F : C →
D→ Ho(D).

Remark 2.1.15 If a (total) left or right derived functor exists (which it need
not) it is unique up to isomorphism. It is customary to abuse notation by
denoting total derived functors by LF and RF, a convention we will adopt
henceforth.

Since total derived functors of a general functor F : C → D need not exist
we must find a class of functors for which they certainly do. The following
definition and proposition give us exactly what we need.

Definition 2.1.16 Let F : C � D : G be an adjunction between two model
categories. If any of the four following equivalent notions are satisfied we
say that the adjunction is Quillen:

• F preserves both cofibrations and acyclic cofibrations.

• G preserves fibrations and acyclic fibrations.

• F preserves cofibrations and G preserves fibrations.

• F preserves acyclic cofibrations and G preserves acyclic fibrations.

Remark 2.1.17 Of course that all four definitions are equivalent should be
proven but since this section is an overview we shall omit this. In any
case the relevant implications all have similar proofs and follow straightfor-
wardly from the fourth model category theory axiom. The interested reader
can find the full details in [14].

14



2.2. Classical constructions

Proposition 2.1.18 [8, Theorem 9.7 (i)] If F : C � D : G is a Quillen adjunction
then LF and RG exist and form a adjunction

LF : Ho(C) � Ho(D) : RG.

We are finally in a position to define the desired notion of equivalence.

Definition 2.1.19 A Quillen adjunction F : C � D : G is called a Quillen
equivalence if the induced adjunction of homotopy categories is an equiva-
lence of categories.

Remark 2.1.20 [8, Theorem 9.7 (ii)] In practice when we want to show that
a Quillen adjunction F : C � D : G is a Quillen equivalence it suffices to
show that any one of the following conditions holds;

• If A ∈ C is a cofibrant object and X ∈ D is fibrant, a morphism F(A)→
X is a weak equivalence if and only if its adjoint morphism A→ G(X)
is.

• For every cofibrant object c ∈ C, the composite c
µc−→ GF(c)→ G(F(c) f ib),

of the adjunction unit with a fibrant replacement F(c) → F(c) f ib, is a
weak equivalence in C. We also require that for every fibrant object
d ∈ D, the composite F(G(d)co f ib) → F(G(d)co f ib)

εd−→ d, of the cofi-
brant replacement functor G(d)co f ib → G(d) with the counit of the
adjunction, is a weak equivalence in D.

2.2 Classical constructions

In this section we collect the classical topology necessary to read this report.
First we introduce two classical topological constructions; loop spaces and
suspensions. These are both extremely important in stable homotopy theory,
and hence central to the story of algebraic topology itself. We will also study
the category of pointed topological spaces, where we shall meet two natural
binary operations, the smash and wedge products. The first of these is
the category-theoretical product for pointed spaces, while the second is the
coproduct, and will be needed to define the topological coendomorphism
operad in Section 2.3.

In this thesis, we will use I to denote the unit interval [0, 1] and Dn to denote
the unit n-disc. We shall also identify the unit n-sphere Sn with Dn/∂Dn. In
this way it is equipped with a natural choice of base point. All spaces that
we shall work with in this section are assumed to have the homotopy type
of a CW-complex.

Definition 2.2.1 Let X and Y be two topological spaces. We equip their
hom-set

HomTop(X, Y)

15



2. Topological Spaces

Figure 2.1: The unreduced suspension (image credit to [32])

with the compact open topology so that it forms a topological space. This
is called the mapping space from X to Y and is denoted as either YX or
Map(X, Y).

Remark 2.2.2 The mapping space is an example of the more general phe-
nomenon of an inner hom, which we shall see more in Chapter 3 (see Defini-
tion 4.1.1). The main property of mapping spaces is that for all spaces Y, the
functor MapTop(Y,−) is right adjoint to the functor −× Y. In other words,
for all spaces X and Z, there is a natural bijection of sets

HomTop(X×Y, Z) ∼= HomTop(X, MapTop(Y, Z)).

Definition 2.2.3 Let (X, ∗) be a pointed topological space. Then the loop
space of X is the set of pointed continuous maps from the pointed circle to
X

ΩX := HomTop∗((S
1, ∗), (X, ∗))

equipped with the compact-open topology. We view this as a pointed space
with the distinguished point being the constant map S1 → ∗. The n-fold loop
space of X is simply Ωn(X) = Ω(Ωn−1(X)) where Ω1X is ΩX.

Definition 2.2.4 The reduced cone CX of a pointed space X is (X × I)/(X ×
{0} ∪ ∗× I) The reduced suspension ΣX of a pointed space X is (X× I)/(X×
{0} ∪ ∗ × I ∪ X × {1}). If we say that Σ1X := ΣX, then the n-fold reduced
suspension Σn(X) is Σ(Σn−1(X)).

Remark 2.2.5 There are more geometrically intuitive notions of an unre-
duced cones and unreduced suspensions defined respectively as

uCX = (X× I)/(X× {0})

uΣX := (X× I)/(X× {0} ∪ X× {1}).

The unreduced suspension is visualised in Figure 2.1. To obtain the reduced
suspension we also contract the line ∗ × I to a point. In future we will only
ever work with reduced suspensions so we will drop the qualifier and refer
to them as suspensions.
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2.2. Classical constructions

Loop spaces and suspensions are actually adjoint functors in the enriched
category. This result is a basic example of what is known in the literature as
Eckmann-Hilton duality.

Proposition 2.2.6 Let X, Y be pointed topological spaces. Then we have

MapTop∗(ΣX, Y) ∼= MapTop∗
(X, ΩY).

In other words, there is an enriched adjunction with the left adjoint being the sus-
pension functor and the right being the loop space functor.

We are not going to prove this result until we have introduced the smash
product, the tensor product in the category of pointed topological spaces.
Proposition 2.2.6 will then be an easy application of tensor-hom adjunction.

Definition 2.2.7 Let (A, a0) and (B, b0) be two pointed spaces. Their wedge
sum is A ∨ B := (A t B)/ ∼ where ∼ is the identification a0 ∼ b0 and t
signifies disjoint union.

This corresponds to gluing two pointed topological spaces together at at
their distinguished points. For example the wedge sum of two circles is a
figure of eight.

Definition 2.2.8 The smash product of pointed topological spaces A and B is
A ∧ B := (A× B)/(A ∨ B).

Proposition 2.2.9 The wedge product is distributive over the smash product, ie. if
X, Y and Z are pointed topological spaces then X ∧ (Y ∨ Z) = (X ∧Y)∨ (X ∧Y).

Proof Using the definition of the smash product, we have that

X ∧ (Y ∨ Z) = (X× (Y ∨ Z))/(∗ × (Y ∨ Z) ∪ X× ∗).

Then, applying the definition of a wedge product to (Y ∨ Z) we see that

(X× (Y ∨ Z))/(∗ × (Y ∨ Z) ∪ X× ∗) =
(X× (∗ × Z ∪Y× ∗))/(∗ × (∗ × Z ∪Y× ∗) ∪ X× ∗).

Using the distributivity of the Cartesian product over itself, we obtain

(X× (∗ × Z ∪Y× ∗))/(∗ × (∗ × Z ∪Y× ∗) ∪ X× ∗) =
(X× ∗× Z ∪ X×Y× ∗)/(∗ × ∗ × Z ∪ ∗ ×Y× ∗ ∪ X× ∗× ∗)

Unions commute with quotients giving

(X× ∗× Z ∪ X×Y× ∗)/(∗ × ∗ × Z ∪ ∗ ×Y× ∗ ∪ X× ∗× ∗) =
((X×∗×Z)/(∗×∗×Z∪X×∗×∗))∪ ((X×Y×∗)/(∗×Y×∗∪X×∗×∗))
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2. Topological Spaces

Finally, using the definition of the wedge and smash products this contracts
to

((X× ∗× Z)/(∗ × ∗ × Z ∪ X× ∗× ∗))∪
((X×Y× ∗)/(∗ ×Y× ∗ ∪ X× ∗× ∗)) = (X ∧Y) ∨ (X ∧Y).

�

Remark 2.2.10 Once can easily show that the smash product is the category-
theoretical product in the category of simplicial sets. Moreover, one can eas-
ily show that the functor X ∧ − is left adjoint to the functor MapTop∗

(X,−)
for all pointed topological spaces X.

Smash products are also intimately related to suspensions.

Proposition 2.2.11 Let X be a pointed topological space. Then the suspension ΣX
is homeomorphic to X ∧ S1.

Proof The 1-sphere S1, which is defined as D1/∂D1, is homeomorphic to
I/({0} ∪ {1}). Then we have X ∧ S1 = (X × I/(X × {0} ∪ X × {1}))/(X ∨
S1) = (X× I)/(X× {0} ∪ ∗ × I ∪ X× {1}) = ΣX. �

With the aid of Proposition 2.2.11 it becomes very easy to prove Proposition
2.2.6.

Proof (Proposition 2.2.6) By Lemma 2.2.11 we have that

MapTop∗
(ΣX, Y) ∼= MapTop∗

((X ∧ S1), Y).

By the wedge product–mapping space adjunction, we further have

MapTop∗
((X ∧ S1), Y) ∼= MapTop∗

(X, MapTop∗
(S1, Y)).

Finally, once again applying Lemma 2.2.11 we can conclude that

MapTop∗
(X, MapTop∗

(S1, Y) ∼= MapTop∗
(X, ΩY),

thus proving the proposition. �

The last purely topological fact that we will need is the following alternative
description of n-fold loop spaces.

Proposition 2.2.12 There is a homeomorphism between ΩnX and HomTop*(S
n, X).

Proof We prove this by induction. The base case follows by definition. Next
we claim that HomTop*(S

k+1, X) = HomTop*(S
k, HomTop*(S

1, X)). The left
hand side is homeomorphic to HomTop*(S

k ∧ S1, X) by tensor-hom adjunc-
tion. Sk ∧ S1 is equal to (Dn × D1)/(∂Dn × D1 ∪ Dn × ∂D1). This is home-
omorphic to (In × I)/(∂In × I ∪ In × ∂I) This is equal to In+1/∂In+1, which
is homeomorphic to Sn+1, proving the proposition. �
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Remark 2.2.13 In the course of proving the last result we showed that Sn

is of the same homotopy type as (S1)∧n. We could equally apply this to
Proposition 2.2.11 to obtain the Hilton-Eckmann dual of the last result. That
is, ΣnX is homotopy equivalent to X ∧ Sn.

2.3 Operads and algebras

Operads were first introduced in 1971 by J. P. May to aid in the study of
iterated loop spaces [22], a goal that motivates us here too. We shall have
more to say on iterated loop spaces in Section 2.4, but in this section we
will focus on the basic ideas. Intuitively an algebra in a category C is an
object of C equipped with some n-ary operations from the object to itself.
A well-known example is a vector space equipped with a Lie bracket or an
associative operation. An operad is a gadget that captures what we mean
by ‘Lieness’ or ‘associativity,’ in the latter case in a way that can be made
category–independent. More precisely we will define a P-algebra to be a
special type of module over an operad P , which we could take as either
the Lie or associative operad. Of course we should not lose sight of the fact
that we are primarily interested in topological spaces. Our treatment here
will be squarely aimed at preparing the ground for the introduction of little
n-disk operad, which is the principal protagonist of this report. A more
comprehensive treatment of algebraic operads can be found in [19, Chapter
5].

Operads are fairly complicated beasts to describe and so we will break their
definition into several steps. We shall start by describing the objects that
form the underlying combinatorial data of an operad.

Definition 2.3.1 Let (C,⊗, 1) be a symmetric monoidal category. An S-
module is a family M = (M(0), M(1), M(2) . . . M(i) . . . ), where each M(i)
is an object of C equipped with a right Si-action, where Si is the symmetric
group. If µ ∈ M(n) then µ is said to be of arity n.

A morphism of S-modules f : M → N is a collection of maps { fn : M(n) →
N(n) : n ∈N}. where fn is Sn-equivariant for all n.

Definition 2.3.2 An (symmetric) operad is an S-module P together with com-
position maps

γ : P(r)⊗P(n1)⊗ · · · ⊗P(nr)→P(n1 + · · ·+ nr)

for every r, n1, . . . , nr ≥ 0 and a right action of Sr on P(r) which we denote
∗. We further require that these satisfy the following axioms.

1. (Associativity) We have γ(x, γ(x1, x1,1, . . . x1,n1), . . . , γ(x1, xr,1, . . . xr,nr))
is equal to γ(γ(x, x1, . . . , xr), x1,1, . . . , xr,nr) for all x ∈P(r), xi ∈P(ni)
and xi,j ∈P(ni,j).
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2. Topological Spaces

2. (Unit) We have a distinguished element 1 ∈ P(1). This satisfies the
identity γ(x, 1, . . . , 1) = γ(1, x) = x.

3. (Equivariance) Let σ ∈ Sr and σi ∈ Sni . Then we have

γ(x ∗ σ, xσ(1), . . . , xσ(r)) = γ(x, x1, . . . , xr) ∗ σn1,...,nr

γ(x, x1 ∗ σ1, . . . , xr ∗ σr) = γ(x, x1, . . . , xr) ∗ (σ1 ⊗ · · · ⊗ σr)

where x ∈ P(r), xi ∈ P(ni) and σn1,...,nr is the permutation that oper-
ates on {1, 2, . . . , n1 + · · ·+ nr} by breaking it into n blocks with the ith

of size ni and permuting these blocks by σ.

An operadic morphism Φ : P → Q is a morphism of S−modules that
is compatible with composition and sends the identity to the identity.

We will briefly explain how one should think about the two previous def-
initions in the category Vect which will hopefully give the reader a more
general intuition. Each P(n) is a representation of Sn which we view as the
‘space of -arity n formal operations’. We can think of each element of P(n)
as a formal operation that takes n arguments. Evidently given an operation
α(−,−, · · · ,−) that takes r arguments and n operations βi(−,−, · · · ,−)
each taking ni arguments we can compose them to produce the operation
α(β1(−, · · · ,−), . . . , βn(−, · · · ,−)) which takes n1 + · · ·+ nr and thus can
be regarded as an element of P(n1 + · · · + nr). This is our function γ. It
is clear that this γ should satisfy some notion of associativity. Another nice
property one could hope for is the existence of a unary (arity 1) identity
operation.

Given an operation one of the most natural things we can do is to permute
its inputs. For example, given the arity 3 operation (x1x2)x3 if we apply
the permutation (123) to it we get (x2x3)x1. This should be thought of as
the action of symmetric group. Equivariance is exactly the property that we
need to ensure that composition respects this permutative structure.

Remark 2.3.3 The map γ takes n + 1 inputs which can make it quite com-
plex to work with. To simplify formulae we will often replace it with partial
operadic composition, which takes only 2 inputs. Let x ∈P(n) and y ∈P(m).
Then the operation x ◦i y ∈ P(n + m− 1), called the partial composite of x
and y at i, is given by

x ◦i y := γ(x, 1, . . . , y, . . . , 1)

where the y occurs at the i + 1 place. On the other hand, one can show (see
[19, Proposition 5.3.8]) that, for x ∈P(r) and yi ∈P(ni) for r ≥ i ≥ 1, that

γ(x, y1, . . . yr) = (· · · ((x ◦n yn) ◦n−1 yn−1) · · · ) ◦1 y1.
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To further illustrate the concept of an operad we will give two important
examples in the category Vect which we will see analogues of later in Top*.

Example 2.3.4 The associative operad Assoc has the underlying S-module given
by the regular representation in each arity. This recognizes the fact that we
have a different associative operation xσ(1)xσ(2) · · · xσ(n) for each σ ∈ Sn. The
composition map γ is defined by γ(σ, ζ1, . . . , ζr) := π(ζσ(1) × ζσ(2) × · · · ×
ζσ(n)) where π is the natural embedding Sn1K× · · · × Snr K ↪→ Sn1+···+nr K

Example 2.3.5 The commutative operad Com has the trivial one-dimensional
representation in each arity and composition is also trivial. This is due to
the fact that there is only one commutative operation of arity n. Because the
trivial representation is the terminal object in the category of representations,
Com is the terminal object in the category of symmetric operads over sets,
spaces and simplicial sets.

Remark 2.3.6 There is a somewhat simpler notion of a nonsymmetric operad
which is a symmetric operad but without the symmetric structure ie. we
do not require that P(n) be equipped with a right action of Sn and we do
not require equivariance. We will make occasional mention of these. Be
warned though that some of the standard notation may appear inconsistent
at first. For example, the nonsymmetric associative operad is defined by
Assoc(n) = ∗ for all n. The reason for this effectively boils down to the
fact that symmetric operad operations are not independent. In fact they are
independent only up to free action of the symmetric group.

The next topic we are going to discuss is the notion of an algebra over an
operad. We previously viewed an operad as a structure consisting of for-
mal operations. An algebra over that operad is a structure equipped with
concrete realizations of those formal operations via an action.

Definition 2.3.7 Given an object X of a closed symmetric monoidal category
M, the endomorphism operad End(X) has underlying S−module structure
given by Hom(X⊗n, X) in arity n (where Hom is the internal hom) equipped
with a right Sn-action via permutation of the factors in the tensor product.
Operadic composition is given by

γ : End(X)(r)⊗End(X)(n1)⊗· · ·⊗End(X)(nr)→ End(X)(n1 + · · ·+nr)

( f , f1, . . . fn) 7→ f ◦ ( f1 ⊗ f2 ⊗ · · · ⊗ fn).

Definition 2.3.8 An algebra over an operad P in a closed symmetric monoidal
category C is an object A ∈ C equipped with an operadic morphism Φ :
P → End(A).

Remark 2.3.9 Using tensor-hom adjunction we can see that this is equivalent
to giving a sequence of products on A.

Φr : P(r)⊗ A⊗r → A
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In a recent preprint [25, Theorem A], Moreno-Fernández and Wierstra show
that one can define a coalgebra over an operad in topological spaces. There is
a similar, but not equivalent, notion in Vect given in [19, Subsection 5.2.17].
We summarise this below.

Definition 2.3.10 Let X be a pointed topological space. The coendomorphism
operad CoEnd(X) has arity r component

CoEnd(X)(r) := MapTop∗
(X, X∨r)

For r = 0, set CoEnd(X)(0) = MapTop∗
(X, ∗) = ∗. The operadic composition

maps are defined by

γ : CoEnd(X)(r)⊗CoEnd(X)(n1)⊗ · · · ⊗CoEnd(X)(nr)→
CoEnd(X)(n1 + · · ·+ nr)

( f , f1, · · · , fn) 7→ ( f1 ∨ · · · ∨ fn) ◦ f

The symmetric group action permutes the wedge factors in the output.

Remark 2.3.11 Note that CoEnd(X) is naturally pointed. We will normally
choose to ignore this extra structure, and will regard CoEnd(X) as un-
pointed for the rest of this report.

This immediately allows us to define a coalgebra as an algebra over the
coendomorphism operad.

Definition 2.3.12 Let P be an (unpointed) operad in the category of topo-
logical spaces. A P-coalgebra is a pointed space X along with an (unpointed)
morphism of operads

∆ : P → CoEnd(X)

Remark 2.3.13 Using the product-mapping space adjunction we see that
this is equivalent to giving a sequence of coproducts on the space X.

∆r : P(r)× X → X∨r

(ϕ, x) 7→ ∆(ϕ)(x)

We now have all the ingredients we need to proceed to the next topic where
we will study algebras and coalgebras over one of the most important topo-
logical operads.
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2.4 The little n-discs operad and the recognition prin-
ciple

In this section we shall introduce the little n-discs operad Dn and briefly
explain how one should think about it. Following that we shall see how
loop spaces are algebras over the little discs operad and how they are ba-
sically unique among connected spaces in this. This uniqueness is called
May’s recognition principle. We shall end by showing that suspensions are
coalgebras over Dn.

Definition 2.4.1 Let Dn by the standard unit disc, defined as the space
{(t1, . . . , tn) ∈ Rn|t2

1 + · · · + t2
n ≤ 1} inside Euclidean space Rn. A little n-

disc is an affine embedding c : Dn → Dn of the form

c(t1, . . . , tn) = (a1, . . . , an) + R · (t1, . . . , tn)

for (a1, . . . , an) ∈ Dn and R > 0 such that R2 < 1− (a2
1 + · · · + a2

n). The
space of little n-discs Dn(r) is the space of r-tuples (c1, . . . , cr) whose terms
are little discs such that c◦i ∩ c◦j = ∅ for i 6= j. Each r-tuple can be identified
with an element of the mapping space MapTop∗

(
⊔n

i=1 Dn, Dn) and so Dn(r)
is equipped with the compact open topology.

The little n-discs operad Dn has underlying S-module structure given by
Dn(r) in arity r. It has a unit given by the identity homeomorphism in arity
1. We have a right Sn-action given by (c1, . . . , cr) ∗ σ = (cσ(1), . . . , cσ(r)) for
all σ ∈ Sn. Finally the composition maps are

γ : Dn(r)×Dn(n1)× · · · ×Dn(nr)→ Dn(n1 + · · ·+ nr)

((c1, . . . cr), (c1,1, . . . , c1,n1), . . . , (c1,1, . . . , c1,nr)) 7→
(c1 ◦ c1,1, . . . , c1 ◦ c1,n1 , c2 ◦ c2,1, . . . cr ◦ cr,nr).

The above definition is long but its basic idea is quite simple. An element
of arity r of the little n-discs operad is a disc with r little, non–overlapping
discs drawn inside it. These discs are labelled using the natural numbers
and the action of the symmetric group is to permute these labels. Figure 2.4
shows the action of S3 on an element of the little 2-discs operad.

Partial ith composition is given by substituting a suitably scaled element of
D2(ni) where the little disc labelled i used to be. This is illustrated in Figure
2.4.

Remark 2.4.2 We say that a morphism of operads over an ambient model
category C is a weak homotopy equivalence if the induced map of S-modules
is a weak equivalence in each arity. Two operads are weakly homotopy
equivalent if there is a zig-zag of weak equivalences between them. An

23



2. Topological Spaces

Figure 2.2: The action of (123) on an element of D2(3)

Figure 2.3: Partial composition in the operad of little discs

operad is said to be an En-operad if it is weakly homotopy equivalent to Dn
and, for all i ≥ 1, the right action of Si on its arity i component is free. The
homotopy theory of operads will be explored further in Chapter 3.

Example 2.4.3 The operad D1 is weakly homotopy equivalent to the operad
Assoc. Thus Assoc is an E1–operad.

The little n-discs operads all ‘fit into’ each other. We have a morphism
f : Dn → Dn+1, which sends Dn to the equatorial plane of Dn+1. We identify
each little n-disc in Dn with a little n + 1-disc in Dn+1 centred in this plane
and with the same radius. This produces a chain of inclusions

D1 ↪→ D2 ↪→ D3 ↪→ · · ·Di ↪→ · · · (2.1)

Example 2.4.4 We define D∞ to be colimn Dn, where the colimit is over the
above chain seen as diagram. One can, with some pain, show that the dis-
crete operad Com is weakly homotopy equivalent to D∞.

The following example shows us what an algebra over the little discs operad
looks like.

Example 2.4.5 Let X be a pointed topological space. The n-fold loop space
ΩnX has a natural Dn–algebra structure. It is defined as follows. First, note
that we can assume ΩnX is of the form HomTop∗(S

n, X) using the homeo-
morphism of Proposition 2.2.12. Then, for each r ≥ 1, define an equivariant
continuous map

Φ′n : Dn(r)× (ΩnX)×r −→ ΩnX (2.2)

(x, α1, . . . , αn) 7→ x(α1, . . . , αn).
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2.4. The little n-discs operad and the recognition principle

The notation x(α1, . . . , αn) needs to be explained. The element x of Dn(r)
has the form ( f1, f2, . . . fr) where each fi : Dn → Dn is a little n-disc. We
define the map

x(α1, . . . , αn) : Dn → X

z 7→
{

αi(π( f−1
i (z))) if z ∈ fi(Dn)◦ for 1 ≤ i ≥ r.

∗ otherwise.

In the definition of this map, π the projection Dn → Dn/∂Dn = Sn. Fi-
nally, we observe that x(α1, . . . , αn)|∂Dn is the constant map ∗. Therefore
x(α1, . . . , αn) restricts to a pointed map x(α1, . . . , αn) : Sn → X, which ex-
actly the map appearing in Equation 2.2. By adjunction, Φ′n defines a map

Φn : Dn(r)→ MapTop∗
((ΩnX)×r, ΩnX)

which one can easily check is operadic morphism from the little n-discs
operad to the coendomorphism operad of ΩnX.

A deep theorem of J. P. May states that, under appropriate conditions, every
algebra of the little discs operad is of this form. This theorem is of great
historical importance, motivating the introduction of operads themselves.
It provides a necessary and sufficient condition for a space to be weakly
homotopic to a loop space, or a recognition principle.

Theorem 2.4.6 (May’s recognition principle [22]) Let X be a connected topo-
logical space possessing a Dn-algebra structure. Then it has the weak homotopy
type of the n-fold loop space of some connected pointed space Y. Conversely every
n-fold loop space is a Dn-algebra as in Example 2.4.5.

Remark 2.4.7 There are stronger versions of this statement available. In
particular we can replace connected with grouplike. We can further say Y is
(n− 1)-connected space, meaning that all of its low dimensional homotopy
groups (πi(X) for i < n) are trivial.

Remark 2.4.8 All that we have said in the this section, including May’s
recognition principle, can rephrased in terms of the little n-cubes operad. This
is essentially the same as the little n-discs operad, except that the word ‘n-
disc[s]’ is replaced everywhere with ‘n-cube[s]’. As one would expect, the
resulting operad can be shown to be En. Using the little n-cubes operad
instead of the little n-discs operad can occasionally greatly simplify calcula-
tions. We shall encounter one such situation in Chapter 3 when we wish to
show that the little n-discs operad is a cellular En operad.

The maps we defined in Equation 2.2 descend to the (singular) homology
and induce various operations on it and the cohomology. For further details,
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we refer you to [6]. We will finish this chapter with the Moreno–Fernández–
Wierstra construction of the coalgebras over the little discs operad. This con-
struction is the Eckmann-Hilton dual of Example 2.4.5 and therefore takes
place over n-fold suspensions.

Example 2.4.9 [25] The n-sphere Sn possesses a Dn–coalgebra structure. It
is constructed as follows. As in Example 2.4.5, for each r ≥ 1, we define a
map

P′r : Dn(r)× Dn → (
r⊔

i=1

Dn) t {∗}

(x, y) 7→
{
∗ if y /∈ ( fi(Dn))◦ for 1 ≤ i ≤ r.
f−1
i (y) otherwise.

As in Example 2.4.5, x is identified with ( f1, . . . fr) where each fi is a little
n-disc. Note that we have a natural projection κ : (

⊔r
i=1 Dn) t {∗} → (Sn)∨r

given by identifying the boundaries of all of the Dn with ∗. Therefore, we
have a map

Dn(r)× Dn P′r−→ (
r⊔

i=1

Dn) t {∗} κ−→ (Sn)∨r.

Observe that κ ◦ P′r |′ :Dn(r)×∂Dn is the constant map ∗. Therefore κ ◦ P′r factors
as

Dn(r)× Dn id×π−−−→ Dn(r)× Sn ∆′n−→ (Sn)∨r.

where π is once again the projection Dn → Dn/∂Dn. One can easily ver-
ify that this map ∆′n : Dn(r)× Sn → (Sn)∨r is continuous and equivariant.
Therefore, by the Cartesian product-mapping space adjunction, we have a
continuous equivariant map

∆n : Dn(r)→ MapTop∗
(Sn, (Sn)∨r)

and one can easily check that this defines an operadic morphism to the
coendomorphism operad of Sn.

Example 2.4.9 generalises easily to the reduced suspension of any space. We
will phrase this result as a theorem.

Theorem 2.4.10 [25, Theorem 2.1] Let ΣnX be the n-fold suspension of a pointed
space X. Then there is a natural map of operads

∆ : Dn → CoEnd(ΣnX)

which encodes the homotopy coassociativity and homotopy cocommutativity of the
pinch map. Otherwise said, n-fold suspensions are coalgebras over the little n-discs
operad.
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2.4. The little n-discs operad and the recognition principle

Proof Using Remark 2.2.13 we have that

Σn(Y ∨ Z) = (Y ∨ Z) ∧ Sn = (Y ∧ Sn) ∨ (Z ∧ Sn) = ΣnY ∨ ΣnZ

where the second equality follows from Proposition 2.2.9.

We define the map ΣnX → (ΣnX)∨r as the composition

ΣnX ∼= X ∧ Sn idx∧∆r(x)−−−−−→ (X ∧ (Sn)∨r) ∼= (X ∧ Sn)∨r ∼= (ΣnX)∨r.

One can easily check that these maps define an operadic morphism. �
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Chapter 3

Simplicial sets

Simplicial sets were first introduced in 1950 by Samuel Eilenberg and J. A.
Zilber [11], as a way of combinatorially storing and manipulating the data
of sufficiently well-behaved topological spaces. This chapter provides a clas-
sical treatment of them. It also includes two important special topics - Kan’s
Ex∞ functor and the Barratt-Eccles operad. Simplicial sets, and more gener-
ally simplicial objects, have too many uses to possibly enumerate. Remark
3.5.2 gives one example, they can be used to construct the classifying space
(up to homotopy) of any sufficiently well-behaved topological group. Sim-
plicial objects also play an important role in the classical proof of May’s
recognition principle [22]. More recently, simplicial sets have been used to
define the basic notion of an ∞-categories in higher algebra [20].

In Section 3.1, we shall define simplicial sets and study their structure as
combinatorial objects. In Section 3.2, we shall see how the category of sim-
plicial sets is connected to topological spaces via a Quillen equivalence. Fol-
lowing that, in Section 3.3, we shall study the analogues in simplicial sets
of the special constructions introduced in Section 2.2; the wedge and smash
products, and suspensions and loop spaces. In Section 3.4, we shall intro-
duce Kan’s Ex∞ functor; a completely combinatorial functor that computes
fibrant replacements in the category of simplicial sets. Finally, we shall con-
clude this chapter in Section 3.5 by studying the Barratt-Eccles En-operad,
the simplicial analogue of the little n-discs operad. Some of this discussion
will feed into the next chapter, where we discuss the model structure on
operads.

3.1 Simplicial sets

In this section we will introduce the simplex category and define simplicial
sets as presheaves over it. We will also study some essential basic exam-
ples. Simplicial sets are an important tool, analogous to CW complexes but
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3. Simplicial sets

more powerful, for capturing information about topological spaces in a com-
pletely combinatorial way. The material in this section is quite classical and
there are many good references available. We have chosen to mainly follow
[13, Chapter 1] and [14].

Definition 3.1.1 The simplex category 4 is the category whose objects are
the nonempty finite ordinals, traditionally denoted as the totally ordered
sets [n] = {0, 1, . . . , n}. The morphisms Hom4([n], [m]) of 4 consist of the
order-preserving (or increasing) functions [n]→ [m].

Every morphism of 4 admits a unique factorisation as an increasing surjec-
tion followed by an increasing injection. This observation motivates us to
study the following two important classes of increasing functions.

Definition 3.1.2 We define ∂i : [n− 1]→ [n] by

∂i(x) =

{
x if 0 ≤ x < i
x + 1 if i ≤ x ≤ n− 1

for 0 ≤ i ≤ n. (3.1)

We define σj : [n + 1]→ [n] by

σj(x) =

{
x if 0 ≤ x ≤ j
x− 1 if j < x ≤ n

for 0 ≤ j ≤ n. (3.2)

Remark 3.1.3 In theory we should denote these maps by ∂i
n and σi

n respec-
tively. In practise it is almost always clear from context what the domain
and codomain are and therefore it is standard to omit the index n.

These maps generate all the morphisms of4 and satisfy the following easily
verifiable cosimplicial relations.

∂j∂i = ∂i∂j−1 if i < j

σj∂i = ∂iσj−1 if i < j

σj∂i = id if i = j, j + 1

σj∂i = ∂i−1σj if i > j + 1

σjσi = σi−1σj if i ≥ j

(3.3)

Definition 3.1.4 A simplicial set is a (contravariant) functor X• : 4op → Set .

Remark 3.1.5 Dually, we have the notion of a cosimplicial set which is a co-
variant functor X• : 4 → Set . More generally, for an arbitrary category C
any (contravariant) functor X• : 4op → C is referred to as a simplicial object.
In particular, we shall later encounter the concept of a simplicial group.
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3.1. Simplicial sets

More combinatorially, a simplicial set X• consists of the following data:

• For each n ∈N0, a set Xn, the elements of which are called n-simplices.
0-simplices are usually called points, 1-simplices edges and 2-simplices
faces.

• face maps di : Xn → Xn−1 for 0 ≤ i ≤ n.

• degeneracy maps sj : Xn → Xn+1 for 0 ≤ j ≤ n.

The face and degeneracy maps satisfy the simplicial relations, which are the
cosimplicial relations with the order of composition reversed. Explicitly,
they are

didj = dj−1di if i < j.

disj = sj−1di if i < j.

disj = id if i = j, j + 1.

disj = sjdi−1 if i > j + 1.

sisj = sjsi−1 if i ≥ j.

(3.4)

We refer to simplices that are in the image of any degeneracy map as degen-
erate.

Example 3.1.6 A very common way for simplicial sets to arise ‘in nature’ is
as the nerve of a small category J , denoted N (J ). This is given by

N (J )n = HomCat([n],J )

where [n] is the poset (regarded as a small category with inclusion mor-
phisms) {0, 1, . . . , n}, and with the natural face and degeneracy maps. More
explicitly N (J )n consists of n-tuples of composable morphisms

A0 A1 · · · An

in J with face maps di given by composing the morphisms Ai−1 → Ai and
Ai → Ai+1 to Ai−1 → Ai+1 and degeneracy maps si given by adding an
identity map at Ai.

Definition 3.1.7 The category Set4 consists of all simplicial sets with the
morphisms between them being natural transformations of functors.

Remark 3.1.8 More prosaically, a morphism of simplicial sets from X• to
Y• can also be described as a collection of functions fn : Xn → Yn, which
commutes with the face and degeneracy maps.

Definition 3.1.9 A simplicial subset of X• is a simplicial set Y• such that Yn ⊆
Xn. The face and degeneracy maps on Y• are inherited from X•, and in
particular, Y• is closed under them.
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3. Simplicial sets

There are two related kinds of simplicial sets that have properties that make
them of particular interest.

Example 3.1.10 The standard n-simplex 4n
• is defined to be Hom4([k], [n]).

with degeneracy and face maps induced by the functorality of Hom(−, [n]).
By Yoneda’s lemma, for any simplicial set X we have HomSet4(4n, X) ∼= Xn.

Consider vn = id[n] ∈ 4n
n. The boundary of the standard simplex ∂4n

• is
the smallest simplicial subset of 4n

• which contains divn, the ith face, for
0 ≤ i ≤ n. We interpret this combinatorially as

∂4n
i = { f : [i]→ [n]| f ∈ 4n

i and f is not surjective}.

Later, when we define the geometric realization of a simplex, we shall see
that the boundary of a simplex is realized as the boundary of the correspond-
ing geometric simplex.

Remark 3.1.11 We can define a natural cosimplicial object 4• : 4 → Set4
in the category of simplicial sets as follows.

• It has dimension n component 4n equal to 4n
• .

• The ith coface map (in dimension k) ∂i
4•,k : 4n

k → 4
n+1
k is defined by

∂i
4•,k := Hom4([k], ∂i).

• The ith codegeneracy map (in dimension k) σi
4•,k : 4n

k → 4n−1
k is

defined by
σi
4•,k := Hom4([k], σi).

Some of this notation may be confusing, so it is worth remarking that the
∂i and σi occurring within the expressions Hom4([k], ∂i) and Hom4([k], σi)
are morphisms in the simplex category4 and entirely distinct from ∂i

4• and
σi
4• .

There is an analogue of Definition 2.2.1 in category of simplicial sets (These
are both examples of a more general phenomenon called an internal hom see
Definition 4.1.1 for further details), called the simplicial mapping space. It is
defined as follows.

Definition 3.1.12 Let X and Y be simplicial sets. The simplicial mapping space
MapSet4

(X, Y) is a simplicial set with dimension n component given by

MapSet4
(X, Y)n = HomSet4(X×4n, Y)

and with face maps

di : MapSet4
(X, Y)n → MapSet4

(X, Y)n−1
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3.2. The relationship between Set4 and Top

f 7→ (id×∂i
4•) ◦ f

and with degeneracy maps

si : MapSet4
(X, Y)n → MapSet4

(X, Y)n+1

f 7→ (id×σi
4•) ◦ f .

The final topic of this section is skeletons of simplicial sets.

Definition 3.1.13 Let X be a simplicial set and let n be a non-negative inte-
ger. The n-skeleton of X, written skn X is the smallest simplicial subset of X
that contains all the non-degenerate simplices of dimension ≤ n.

Remark 3.1.14 This is the same idea as that of n-skeletons of CW-complexes.
In both cases we simply forget the higher dimensional cells. The only dif-
ference that (skn X)k will not be empty for k > n. Instead it will contain the
degeneracies of the lower dimensional simplices.

Remark 3.1.15 A standard method of proof in simplicial set theory is to
prove a property via induction on the n-skeleton.

3.2 The relationship between Set4 and Top

As we have mentioned several times, there is a strong relationship between
simplicial sets and topological spaces. To be precise, there is a model cate-
gory structure on Set4 which is Quillen equivalent to the standard model
structure in Top . We describe the adjoint pair of functors between these cat-
egories first, as it provides the easiest way to describe the weak equivalences
in Set4 . Our treatment broadly follows [13, Chapters 1 & 2].

Definition 3.2.1 The geometric n-simplex is defined to be

|4n| = {(t0, . . . tn) ∈ (R≥0)
n+1 : t0 + · · ·+ tn = 1}.

The collection of geometric n-simplex |4•| forms a cosimplicial object in the
category of topological spaces when equipped with coface maps via

∂i : |4n| → |4n+1|

(t0, . . . tn) 7→ (t0, . . . , ti, 0, ti+1, . . . tn),

and codegeneracy maps via

σi : |4n| → |4n−1|

(t0, . . . tn) 7→ (t0, . . . , tj−1, tj + tj+1, tj+2, . . . , tn).
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3. Simplicial sets

Definition 3.2.2 Let X• be a simplicial set. Its geometric realisation is the
topological space

|X•| :=
( ⊔

n≥0

Xn × |4n|
)
/ ∼

where the equivalence relation ∼ is given by

(di(x), t) ∼ (x, ∂i(t)), (sj(x), t) ∼ (x, σj(t)).

Example 3.2.3 The geometrical realization of the standard n-simplex is the
geometric n-simplex.

The geometric realisation is functorial and gives us our desired functor F :
Set4 → Top . The next construction is also functorial and provides us with
the adjoint functor in the opposite direction.

Definition 3.2.4 Let Y be a topological space. Its singular simplicial set is
given by S•(Y) := HomTop(|4•|, Y) with face and degeneracy maps induced
by the cosimplicial structure on |4•|.

Proposition 3.2.5 [14] The singular simplicial set and the geometric realisation
functors form an adjunction, ie. S• : Top � Set4 : | |

Remark 3.2.6 The proof of this is omitted, but very straightforward.

The model category structure on Set4 is chosen precisely to make this ad-
junction Quillen.

Definition 3.2.7 Let n ≥ 1 and 0 ≤ k ≤ n. The kth horn (Λn
k )• is the smallest

simplicial subset of 4n
• that contains the faces divn for i 6= k. Otherwise said,

the kth horn is the boundary of the n-simplex missing the kth face.

Definition 3.2.8 A Kan fibration is a simplicial morphism p : X → Y that has
the right lifting property with respect to all inclusions Λn

k ⊂ 4n. In other
words the dotted lift exists in all diagrams of the form

Λn
k X

4n Y.

p

One can check quite easily that the geometric realisation of a Kan fibration
is a Serre fibration. We define Kan complexes to be the objects with a Kan
fibration as their terminal morphism. As these will play an important role
in this report, we will write this out more formally.
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Definition 3.2.9 A Kan complex is a simplicial set X• such that, for every
n ∈N and n ≥ k ≥ 0, the dotted arrow exists in every diagram of the form

Λn
k X

4n.

This lifting property is also called the horn filling condition.

Theorem 3.2.10 [13, Theorem 11.3] The category Set4 admits a cofibrantly gener-
ated model category structure, called the Kan–Quillen structure, where

• The weak equivalences are the simplicial morphisms that induce weak homo-
topy equivalences on the level of geometric realisations.

• The fibrations are the Kan fibrations.

• The cofibrations are the levelwise injective simplicial morphisms.

In the Kan–Quillen model structure every simplicial set is cofibrant and the
fibrant objects are the Kan complexes. Moreover, the Quillen adjunction
between S• and | | becomes a Quillen equivalence.

Theorem 3.2.11 [13, Theorem 11.4] When Set4 and Top are equipped with their
respective Quillen model structures, the adjunction between the geometric realisa-
tion and singular simplicial set functors S• : Top � Set4 : | | is a Quillen
equivalence.

3.3 Construction on simplicial sets

In this section, we will describe the simplical analogues of the classical topo-
logical constructions of Section 2.2. We start by defining the category of
pointed simplicial sets. We then define the simplicial wedge and smash
products. Afterwards we look at the loop spaces and the reduced suspen-
sion. Our treatment here is similar to that of Curtis in [7].

Definition 3.3.1 A base point ∗ of a simplicial set X is the simplicial subset
of X consisting of a vertex and all of its degeneracies. By abuse of notation,
∗n is usually abbreviated to ∗.

Remark 3.3.2 A pointed simplicial set is a pair (X, ∗) consisting of a simplical
set and a base point ∗. A morphism of pointed simplicial sets is simply a
simplicial morphism that preserves base points.

Definition 3.3.3 Let X be a simplicial set and Y be a simplicial subset. The
simplicial quotient is defined by (X/Y)n := Xn/Yn.
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Example 3.3.4 A very important example of a pointed simplicial set is the
n-sphere Sn. This is defined as the quotient 4n/∂4n. It contains two nonde-
generate simplices, one 0-simplex corresponding to ∂4n which we take to
be ∗ and one n-simplex corresponding to id[n] .

The most naı̈ve way to combine two simplicial sets is the Cartesian product.
All of our later binary operations will be defined in terms of it.

Definition 3.3.5 Let X and Y be two simplicial sets. The Cartesian product
X×Y is defined by (X×Y)n = Xn ×Yn with the face and degeneracy maps
given by di(x, y) = (dix, diy) and si(x, y) = (six, siy).

Remark 3.3.6 The Cartesian product is the category-theoretical product in
the category of simplicial sets. In other words, the following diagram is a
pullback

X×Y X

Y ∗.

π1

π2 p

q

where; the πi are the projection maps, ∗ is the terminal object in the category
of simplicial sets (ie. the simplicial set with one non-degenerate simplex in
dimension 0) and p, q are terminal morphisms.

Definition 3.3.7 The wedge product X ∨Y of two simplicial sets is the simpli-
cial subset of X × Y consisting of the union of X × ∗ and ∗ × Y. The smash
product X ∧ Y of two simplicial sets is defined to be (X × Y)/(X ∨ Y) These
operations on simplicial sets respectively correspond to the wedge sum and
smash product on topological spaces. One can prove that the smash prod-
uct is the category-theoretical product for the category of pointed simplicial
sets.

Definition 3.3.8 Let (X, ∗) be a pointed simplicial set. The loop space ΩX of
X is the simplicial set

(ΩX)n = {x ∈ Xn+1 : d1d2 . . . dn+1(x) = ∗ and d0(x) = ∗}.

For each 0 ≤ i ≤ n, the face map dΩX
i is the restriction of the face map dX

i+1
of Xn+1 to (ΩX)n. Similarly the degeneracy map sΩX

i is the restriction of the
face map sX

i+1 of Xn+1.

Definition 3.3.9 Let X be a simplicial set. The reduced cone is the simplicial
set

(CX)n = {∗} ∪ {(x, q) : x ∈ Xn−q − {∗} and 0 ≤ q ≤ n}/
The face and degeneracy maps are given by

di(x, q) =

{
(x, q− 1), if 0 ≤ i < q
(di−qx, q), if q ≤ i ≤ n
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3.3. Construction on simplicial sets

si(x, q) =

{
(x, q + 1), if 0 ≤ i < q
(si−qx, q), if q ≤ i ≤ n.

Definition 3.3.10 Observe that there is an embedding X ↪→ CX given com-
binatorially by x 7→ (x, 0). The (reduced) suspension ΣX of the simplicial set
X is the pointed simplicial set CX/X.

As one would expect, all the relations between these objects that we have
seen in the category of topological spaces hold in the simplicial world. For
example:

Proposition 3.3.11 The n-fold suspension ΣnX of a simplicial set X is isomorphic
to X ∧ Sn.

In order to show this, we will first prove two lemmata.

Lemma 3.3.12 The suspension ΣX of a simplicial set X is isomorphic to X ∧ S1.

Proof The 1-sphere S1 has two non-degenerate simplices, ∗ in dimension 0
and σ ∈ S1

1. It follows that in dimension n, S1
n is the set

{∗} ∪ {s(k)(σ) : 0 ≤ k ≤ n− 1}

where s(k) = sn−1sn−2 · · · ŝk · · · s0. We are using the notation x̂ to mean that
we are omitting x. From this we can concretely describe X ∧ S1 as

(X ∧ S1)n = {∗} ∪ {(x, s(q)(σ)) : x ∈ Xn − {∗} and 0 ≤ q ≤ n− 1} (3.5)

di(x, s(q)(σ)) =

{
(dix, s(q−1)(σ)), if 0 ≤ i ≤ q
(dix, s(q)(σ)), if q < i < n

si(x, s(q)(σ)) =

{
(six, s(q+1)(σ)), if 0 ≤ i ≤ q
(six, s(q)(σ)), if q < i < n

Now we define a pointed simplicial morphism f : ΣX → X ∧ S1 as

f : (x, q)→ (sq−1 · · · s0(x), s(q−1)(σ))

where we are using the description of the reduced suspension descending
from that of the cone. This is defined on the whole domain because (x, 0)
goes to ∗ in the quotient CX/X. Checking that this is indeed a simplicial
morphism is straightforward task using the standard si and di identities. We
observe that it is invertible and thus induces an isomorphism of simplicial
sets. �

Lemma 3.3.13 The n-sphere Sn is isomorphic to (S1)∧n.

37



3. Simplicial sets

Proof As in the proof of Lemma 3.3.12 we observe the elements of Sn =
4n/∂4n consist of a 0-simplex ∗, an m-simplex σm and their degeneracies.
The smash product (S1)∧n can be written

(S1)∧n
m = {∗} ∪ {(s(q1)(σ1), s(q2)(σ1), . . . s(qn)(σ1)) : m > qi ≥ 0} (3.6)

and is equipped with face and degeneracy maps in the obvious way.

From standard simplicial identities, one can check that for every permuta-
tion τ ∈ Sn

(s(τ(0))(σ1), . . . , s(τ(n−1))(σ1))

is the same as
(s(0)(σ1), . . . , s(n−1)(σ1)).

In other words, (S1)∧n
n has only one nondegenerate simplex. Therefore one

can define a pointed simplicial map f : Sn → (S1)∧n by

σn 7→ (s(0)(σ1), . . . , s(n−1)(σ1))

Observe that (S1)∧n has no nondegenerate simplices in dimension m > n. If
it did, this simplex would have to be of the form

(s(q1)(σ1), . . . , s(qm)(σ1)). (3.7)

and there would exist least one 0 ≥ j < m such that sj is a component of
all the s(qi). All the simplices of dimension m < n are also of the form 3.7,
which means they are degeneracies of f (σn). Therefore, f is surjective. Since
it is clearly injective, we deduce that f is an isomorphism. �

Proof (Proposition 3.3.11) By Lemma 3.3.12 we know that ΣX = X ∧ S1. Thus
for general n, ΣnX = X ∧ (S1)∧n. Whence by Lemma 3.3.13 we know ΣnX ∼=
X ∧ Sn. �

3.4 Kan’s Ex∞ functor

One of the basic facts about a model category is that all objects admit a
functorial fibrant and cofibrant replacements. Calculating these is extremely
useful as it allows easy passage to the homotopy category. In the category
Set4 equipped with Quillen model structure, every object is cofibrant and
so the cofibrant replacement functor is trivial.

The question of fibrant replacements is resolved via Kan’s Ex∞ functor which
computes them via the process of barycentric subdivision. We shall be
broadly following Chapter III of [13].
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0 (0, 1) 1

Figure 3.1: sd41

0

(0, 1) (0, 1, 2) (0, 2)

1 (1, 2) 2.

Figure 3.2: sd42

Definition 3.4.1 Observe that the nondegenerate simplices of4n are exactly
the increasing injections [m]→ [n] with 0 ≤ m ≤ n. These are in one-to-one
correspondence with the subsets of {0, 1, . . . , n} of cardinality m + 1 and
thus form a poset under inclusion which we denote P4n. We define the
simplical subdivision of 4n to be

sd4n := N (P4n)

where N is the nerve of the poset (regarded as a small category with mor-
phisms given by inclusions).

Visually the subdivisions of the first two standard simplices are shown in
Figures 3.1 and 3.2. The arrow notation

a
f−→ b

simply means that d0( f ) = a and d1( f ) = b. The leading way that they have
been drawn, illustrates the following lemma.

Lemma 3.4.2 [13, Lemma III.4.1] On the level of geometric realizations, there is a
homeomorphism f : | sd4n| ∼−→ |4n|.

The notion of subdivision can be extended to any simplicial set, not just
the standard simplices. This extension makes use of the notion of a simplex
category, which we shall introduce next.

Definition 3.4.3 The simplex category 4 ↓ X of a simplicial set X, has for
objects all simplicial maps σ : 4n → X and has for morphisms, the commu-
tative diagrams of the form

4n X

4m

σ

θ∗
τ
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3. Simplicial sets

where θ∗ is induced by a unique ordinal map θ : [m]→ [n].

Definition 3.4.4 Let X be a simplicial set. The subdivision sd X of X is de-
fined to be the simplicial set

sd X = lim4n→X sd4n

with the limit indexed by the simplex category of X.

Remark 3.4.5 This construction is functorial.

Definition 3.4.6 Let X be a simplicial set. There is a natural map ν4n :
sd4n → 4n induced by the map of posets P4n → [n] given by

[v0, v1, . . . , vk] 7→ vk.

The last vertex map νX : sd X → X is

νX = lim4n→X ν4n

with the limit indexed by the simplex category of X.

Lemma 3.4.7 Let X and Y be simplicial sets and f : X → Y be a simplicial map.
Then the following diagram is commutative.

sd X X

sd Y Y.

sd f

νX

f

νY

(3.8)

Proof This follows from the functorality of lim4n→X . �

We define the Ex functor to be the right adjoint of the sd functor.

Definition 3.4.8 For any simplicial set X we define

Ex(X)n := HomSet4(sd4n, X)

Definition 3.4.9 We have a morphism µX : X → Ex(X) which is adjoint to
the last vertex map. Thus we obtain a diagram

X Ex(X) Ex2(X) · · · (3.9)

The colimit of this diagram is denoted Ex∞(X).

Example 3.4.10 If X is the one point simplicial set, then Ex∞(X) is iso-
morphic to X. Too see this, observe that the one point simplicial set ∗ is
the terminal object in the category of simplicial sets. Therefore (Ex ∗)n =
HomSet4(sd4n, ∗) = ∗n. The face and degeneracy maps are obviously also
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3.4. Kan’s Ex∞ functor

uniquely determined. Thus we can conclude that Ex ∗ = ∗ and thence by
induction that Exn ∗ = ∗. The map Exn ∗ → Exn+1 ∗ induced by the last ver-
tex map must be the identity by the terminality of ∗, and the limit of the
diagram

∗ ∗ ∗ · · ·
is ∗.

The following theorem lists some useful properties of the Ex∞ functor.

Theorem 3.4.11 (Properties of the Ex∞ functor) [13, Theorem 4.8] Let X be a
simplicial set. Then:

1. Ex∞(X) is a Kan complex.

2. The canonical map ηX : X → Ex∞(X) is an acyclic cofibration.

3. Ex∞ preserves fibrations.

4. Ex∞ preserves finite limits.

5. There is a homotopy equivalence between Ex∞(X) and Ex∞(Ex∞(X)).

Proof 1. It suffices to prove the following statement; for any diagram of
the form

ϕ : Λn
k → Ex(X)

there is a unique extension

Λn
k Ex(X)

4n Ex2(X)

ϕ

jEx(X)

To prove this, observe first that ϕ factorises as

Λn
k

f−→ Ex(sd Λn
k )

Ex(ϕ)−−−→ Ex(X)

Therefore we can obtain our desired extension via proving the exis-
tence of the dotted map in the following diagram.

Λn
k Ex(sd Λn

k ) Ex(X)

4n Ex2(sd Λn
k ) Ex2(X)

f

jEx(sd Λn
k )

Ex(ϕ)

jEx(X)

Ex2(ϕ)

The composite map jEx(sd Λn
k )
◦ f is identical to the map

Λn
k

jΛn
k−→ Ex(Λn

k )
Ex( f )−−−→ Ex2(sd Λn

k )
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Thus, using the adjunction between Ex and sd, the problem reduces to
finding the dotted map in the next diagram.

sd Λn
k Λn

k

sd4n Ex(sd Λn
k )

f

We now explicitly construct this map, by defining as follows, for all
σ = (σ0, . . . , σm) ∈ (sd Λn

k )m with σi ∈ 4n
ni

, a function gσ : [m] → [n]
(which need not be a morphism in the simplicial category).

gσ(i) =

{
σi(ni) if σi 6= dk(idn) or idn

k otherwise.

We observe that gσ induces a simplicial map sd4m → sd4n. One can
check that the image of this map is in sd Λn

k .

2. Since acyclic cofibrations are closed under infinite composition, we
need only prove that the map jX : X → Ex(X) is an acyclic cofibration.
We omit the proof of this and invite the interested reader to look at
[13].

3. We shall first prove that Ex preserves fibrations. By adjointness, this
is true if and only if sd preserves acyclic cofibrations. One can prove
(omitted here, see chapter 2 of [13]) that, in the category of simplicial
sets, the acyclic cofibrations are generated by the horn inclusions ϕ :
Λn

k → 4n. Thus it suffices to observe that the map

sd ϕ : sd Λn
k → sd4n

is an acyclic fibration. Observe first that it is obviously injective and
thus a cofibration. Secondly, observe that, on the level of geometric
realizations, we have the following diagram

| sd Λn
k | | sd4n|

|Λn
k | |4n|

| sd ϕ|

∼= ∼=
|ϕ|

with all but the top horizontal map being known weak equivalences
in the Quillen model structure. Therefore by the two out of three
property, applied twice, we deduce that | sd ϕ| is a weak equivalence,
and so sd ϕ is a weak equivalence in the Kan-Quillen model structure
as desired. So Ex preserves fibrations f . Since Λn

k and 4n are small,
Ex∞( f ) has the right lifting property against morphisms of the form
Λn

k → 4n and so is a fibration.
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3.4. Kan’s Ex∞ functor

4. Ex has a left adjoint and thus preserves all small limits. Finite limits
commute with filtered colimits and so Ex preserves finite limits.

5. The morphism ηX : X → Ex∞(X) is a weak homotopy equivalence.
Therefore Ex∞(jX) : Ex∞(X)→ Ex∞(Ex∞(X)) is a weak equivalence of
fibrant objects and so is a homotopy equivalence. �

We shall now outline a slightly more complex, but equivalent, way to define
the Kan–Quillen model structure on Set4 that has the advantage of not mak-
ing reference to topological spaces. We shall define the homotopy groups of
a Kan complex. We extend our notion of homotopy groups to an arbitrary
simplicial set X by saying it has the same homotopy groups as the fibrant
object Ex∞(X).

Definition 3.4.12 Two simplicial morphisms f , g : X → Y are (left) homo-
topic, written f ∼ g, if there exists a H : X ×41 → Y making the following
diagram commute

X×40

X×41 Y

X×40

0
f

h

1 g

Remark 3.4.13 This definition can be applied directly, but it is sometimes
more useful to reformulate it as follows. A homotopy between two maps is
a family of functions hi : Xn → Yn+1 for each integer 0 ≤ i ≤ n satisfying
the following four conditions.

• d0h0 = fn.

• dn+1hn = gn.

• dihj =


hj−1di if i < j.
dihi−1 if i = j 6= 0.
dihi if i = j + 1
hjdi−1 if i > j + 1.

• sihj =

{
hj+1si if i ≤ j.
hjsi−1 if i > j.

In the language of Definition 2.1.9, we are taking X×41 as a natural choice
of cylinder.

Remark 3.4.14 Under the Quillen model category structure on Set4, every
object is cofibrant. Thus ∼ is an equivalence relation on HomSet4(X, Y) if Y
is fibrant.
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Definition 3.4.15 Two simplicial sets X and Y are homotopy equivalent if
there exist simplicial morphisms f : X → Y and g : Y → X such that
f ◦ g ∼ IdY and g ◦ f ∼ IdX .

To define the homotopy groups of a simplicial set, we will need a finer
notion of homotopy equivalence.

Definition 3.4.16 Let X be simplicial set and let W ⊂ X. Then two simplicial
morphisms f , g : X → Y are are homotopic relative to W if there exists a
homotopy H such that H|W×41(w, t) = f (w) = g(w) for all t.

Definition 3.4.17 Let X be a fibrant simplicial set, v ∈ X0 be a vertex and
n ≥ 1. Then the nth simplicial homotopy group πn(X, v) is the set of simplicial
functions 4n → X which are constantly equal to v on ∂4n modulo the
homotopy equivalence relation.

Definition 3.4.17 describes the structure of πn(X, v) as a set. We still need
to explain the precise group structure on X. To that end, let α, β : 4n →
X represent elements of πn(X, v). Then, we define a n + 1-tuple ω(α,β) =
(v0, v1, . . . vn−1, v̂n, vn+1) (where x̂ once again denotes the omission of x) of
n-simplices of X as follows

ωi =


v for 0 ≤ i ≤ n− 2
α for i = n− 1
β for i = n + 1

Observe that diωj = dj−1vi if i < j and i, j 6= n. Thus the tuple ω determines
a simplicial morphism ω : Λn+1

n → X which sends the ith face of Λn+1
n to ωi.

Since X is a fibrant set, ω extends to a simplicial morphism θ : 4n+1 → X.
Observe that

∂(dnθ) = (d0dnθ, . . . , dn−1dnθ, dndnθ) = (dn−1d0θ, . . . , dn−1dn−1θ, dndnθ)

= (v, . . . , v, v)

so dnθ represents an element of πn(X, v). One can easily check the following
lemma.

Lemma 3.4.18 [13, Lemma I.7.1] The homotopy class of dnθ(rel ∂4n) is indepen-
dent of the choices of representatives of [α] and [β], and the choice of lift θ.

Therefore we have a well-defined binary operation

m : πn(X, v)× πn(X, v)→ πn(X, v)

([α], [β]) 7→ [dnθ].

Moreover let e ∈ πn(X, v) be the equivalence class of the morphism

4n −→ 40 v−→ X.
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Theorem 3.4.19 [13, Theorem I.7.2] Let X be a fibrant simplicial set and let v be
0-simplex of X. Then, with the definitions as above, (πn(X, v), m) is a group with
identity e for n ≥ 1. Moreover if n ≥ 2, then (πn(X, v), m) is abelian.

As promised earlier in the chapter, an important use of the Ex∞-functor is
that it gives a purely combinatorial description of the Kan-Quillen model
structure on Set4, without needing to refer to topological spaces.

Theorem 3.4.20 (Quillen) The Kan-Quillen structure on the category Set4 is
equivalent to the structure given as follows

• The simplicial morphism f : X −→ Y is a weak equivalence if Ex∞( f ) :
Ex∞(X)→ Ex∞(Y) induces an isomorphism of homotopy groups.

• The fibrations are the Kan fibrations.

• The cofibrations are the levelwise injective simplicial morphisms.

Remark 3.4.21 The statement of theorem 3.2.10 is almost exactly the same
as the above theorem, except that we are implicitly using S•(|X•|) as an
alternative fibrant replacement functor. In the model structure on Set4 this
is always weakly homotopic to Ex∞(X•), but the same only if X• is the
disjoint union of points.

3.5 The Barratt-Eccles En-operad

The Barratt-Eccles En-operad provides us with a convenient model for the
little n-discs operad. We shall produce it from a filtration of the simplicial
operad, which itself is a simplicial model for the D∞ operad. To understand
the connection with the little discs operad it will then be necessary to intro-
duce the idea of cellular decomposition which exhibits the desired equivalence
on the level of geometric realization. The standard treatment of these things,
which we are broadly following, is [2].

Definition 3.5.1 Let A be a set. We define universal bundle functor W : Set→
Set4 is on objects by (W(A))n := A×(n+1) equipped the with face and de-
generacy maps

di(a0, . . . , an) = (a0, . . . , ai−1, âi, ai+1, . . . , an)

si(a0, . . . , an) = (a0, . . . , ai−1, ai, ai, ai+1, . . . , an)

where the notation x̂ signifies the omission of x. On morphism f : A → B
we define

W( f ) : A→ B

(a0, . . . , an) 7→ ( f (a0), . . . , f (an))
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Remark 3.5.2 The universal bundle functor is of independent interest in sim-
plicial theory. In brief, suppose we have a topological group G which is well
pointed; that is, the unique map to it from the trivial topological group is
closed and a cofibration. Then the geometric realization of W(G) has the
same homotopy type as the classifying space of G.

Rather than working with operads, we will be using the more functorial
notion of a preoperad.

Definition 3.5.3 Let Λ be the category with the nonempty finite ordinals
n = {1, . . . , n} for objects and the injective maps between them for mor-
phisms. For i1, . . . in ∈ m we shall denote the morphism in HomΛ(n, m)
sending (1, 2 . . . n) to (i1, i2 . . . , in) by θi1···in . A preoperad taking values in a
category C is a (contravariant) functor O• : Λop → C. We shall use the nota-
tion On for the object O(n) ∈ C and ϕ∗ for the morphism O(ϕ). A morphism
of preoperads is a natural transformation of functors.

Remark 3.5.4 The category Λ has the same objects as the simplex category
but not the same morphisms. Also, be warned that we are using a slightly
different notation for ordinals in this definition than we did in Section 2.1.

When we were studying simplicial sets we remarked that every morphism
in4 could be decomposed uniquely into a increasing surjection followed by
an increasing injection. Correspondingly every morphism θ : n → m in Λ
decomposes uniquely as a bijection θ] followed by an increasing map θincr.

We should think about preoperads as S-modules with an additional ‘almost
simplicial’ structure. This is best illustrated by the following example.

Example 3.5.5 Every pointed (or unital) operad P , ie. operad with a distin-
guished 0–arity element ∗, has a canonical associated preoperad O that we
construct as follows. On objects we set On := P(n) for n ≥ 1. Now let
θ : n → m be a morphism in Λ. Of course θ] is a bijective map n → n and
thus can be viewed as an element σ ∈ Sn. For i ∈ m we define

xi =

{
1 ∈P(1) if i ∈ Im(θ)

∗ ∈P(0) if i /∈ Im(θ)

We can now define O on morphisms as

θ∗ : Om → On

x 7→ γ(x, x1, . . . , xm) ∗ σ−1.

All the preoperads that we shall see in this chapter are operads. However,
the notion of a preoperad is not strictly weaker than an operad. As we
saw in the last example, one generally needs some extra structure eg. a
distinguished arity 0 operation, to produce a preoperad from an operad.
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3.5. The Barratt-Eccles En-operad

Example 3.5.6 The symmetric preoperad S : Λop → Set is defined on ob-
jects by Sn := HomΛ(n, n). We identify this with the nth symmetric group,
thereby avoiding all possible confusion over notation. On morphisms θ ∈
HomΛ(n, m) we define

θ∗ : HomΛ(m, m)→ HomΛ(n, n)

σ 7→ (σ ◦ θ)]

The symmetric preoperad can be endowed with the operadic structure of
the associative operad. This is given by the unit id ∈ S1 and by

γ : S(r)⊗ S(n1)⊗ · · · ⊗ S(nr)→ S(n1 + · · ·+ nr) (3.10)
(σ, σ1, . . . , σr) 7→ σn1···nr ◦ (σ1 × · · · × σr) (3.11)

where σn1,...,nr is the permutation that operates on {1, 2, . . . , n1 + · · ·+ nr} by
breaking it into n blocks with the ith of size ni and permuting these blocks
by σ.

Once we know what the symmetric preoperad is we can immediately write
down the definition of the simplicial preoperad Γ : Λ → Set4 as the compo-
sition W ◦ S. One can check quite easily that the universal bundle functor
respects Cartesian products. Therefore the operad structure on the symmet-
ric preoperad extends to the simplicial preoperad.

Definition 3.5.7 The simplicial operad Γ is the preoperad W ◦ S inheriting the
operad structure on S.

Remark 3.5.8 It follows easily from Remark 3.5.2 that |Γ(n)| is the universal
principal bundle for Sn.

We shall briefly outline what this means combinatorially. The simplicial sets
defining the simplicial operad in each arity are of the form

Γ(r)n = {(w0, . . . , wn) ∈ Sr × · · · × Sr}

equipped the with face and degeneracy maps

di(w0, . . . , wn) = (w0, . . . , wi−1, ŵi, wi+1, . . . , wn)

si(w0, . . . , wn) = (w0, . . . , wi−1, wi, wi, wi+1, . . . , wn).

Sr acts on Γ(r) diagonally, that is to say if σ ∈ Sr and (w0, . . . , wr) ∈ Γ(r) the

(w0, . . . , wr) ∗ σ = (w0 ∗ σ, . . . , wr ∗ σ)

Finally the compositions are also defined componentwise via the explicit
composition law of Equation 3.10 (in other words we view componentwise
composition as occurring within the associative operad).
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Remark 3.5.9 One can show that Γ(n) is contractible for all n. Therefore the
terminal morphism Γ → Comm is a weak equivalence. In particular, the
simplicial operad is an E∞ operad.

Definition 3.5.10 Let k be a positive integer. The Barratt-Eccles Ek-operad is
defined by

Γ(k)(n) = {x ∈ Γ(n) : θ∗ij(x) ∈ skk−1 Γ(2) for all i < j}.

where skk−1 denotes (k− 1)-skeleton and the notation θij is defined in Defi-
nition 3.5.3.

One can show that Γ(k) defines a filtration of Γ, called the Smith filtration

Γ(1) ↪→ Γ(2) ↪→ · · · ↪→ Γ(i) · · · ↪→ Γ(∞) = Γ

This chain of inclusions should be seen as the analogue in simplicial sets of
Diagram 2.1.

Remark 3.5.11 Using the combinatorial description of the simplicial operad,
we can give a more explicit description of the Smith filtration. Let τ be a
permutation in Sr. For i < j, let τ|i,j be 0 if τ(i) < τ(j) and 1 otherwise.

Consider a simplex σ = (σ0, . . . , σn) in Γ(r)n. Let µσ
ij be the number of times

the sequence (σ0|i,j, . . . , σn|i,j) changes values. Then Γ(k)(r)n is the σ ∈ Γ(r)n
such that µσ

ij < k for all i < j.

The second half of this section is devoted to showing why the Barratt-Eccles
operads act as a simplicial model for the little n-discs operad. This will mean
defining the notion of an En-cellular operad. We shall see that the geometric
realisation of the Barratt-Eccles En-operad has this structure. We shall then
apply a theorem of Fiedorowicz states that any that cellular En-operads are
En-operads, in the sense of Remark 2.4.2. We shall start this program by
defining cells and cellular decomposition.

Definition 3.5.12 Let P be a poset and X be a topological space. A collection
(cp)p∈P of closed contractible subspaces, which we call cells, of X is called a
cellular P-decomposition of X if it satisfies the following three conditions.

• cp1 ⊆ cp2 if and only if p1 ≤ p2.

• These inclusions are cofibrations in the Quillen model structure on
Top.

• X is equal to the union of its cells and has the weak topology with
respect to its cells, that is X = colimP cp.

The interior of the cell cp is

c◦p = cp\(
⋃

q<p
cq).
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Of course, to obtain a En-cellular operad we will need to specify a particular
poset. The PO preoperad is convenient way to parameterize this data.

Definition 3.5.13 Let N(n
2) be the Cartesian product of (n

2) copies of N. We
shall label the components of elements µ ∈ N(n

2) by ordered pairs of indices
(i, j) with 1 ≤ i < j ≤ n. Combinatorially we can view an element of N(n

2)

as the complete graph on n vertices with edges labelled by positive integers.
We use this to define a preoperad structure, called the complete graph preop-
erad, as follows. On objects On := N(n

2). On morphisms θ ∈ HomΛ(n, m) we
define

θ∗ : N(m
2 ) →N(n

2)

θ∗(µ)i,j =

{
µθ(i),θ(j) if θ(i) < θ(j)
µθ(j),θ(i) if θ(i) > θ(j)

The complete graph preoperad has an operadic structure. Let µ ∈ On and
µi ∈ Oin for 0 ≥ i ≥ n. We can think of γ(µ, µ1, . . . , µn) as the complete
graph on i1 + · · ·+ in vertices. The edge labelling is determined as follows.

γ(µ, µ1, . . . , µn)j,k =

{
(µr)ϕ−1

r (j)ϕ−1
r (k) if j, k ∈ ϕr(ir)

µr,s if j ∈ ϕ(ir) and k ∈ ϕs(is)

Here ϕr is the inclusion map ir ↪→ i1 + · · ·+ in. By i1 + · · ·+ in we mean the
set {1, 2, . . . , i1 + · · ·+ in} and the inclusion is thus given by sending i ∈ ir
to i1 + · · ·+ ir−1 + i.

Definition 3.5.14 We define the PO preoperad to be the Cartesian product of
the symmetric preoperad with the complete graph preoperad. More pre-
cisely we define Kn = N(n

2) × Sn. On morphisms θ ∈ HomΛ(n, m) we define

θ∗ : Km → Kn

(µ, σ) 7→ (θ∗cgp(µ), θ∗ms(σ))

where θ∗cgp : N(m
2 ) →N(n

2) and θ∗ms(σ) : Sn → Sn are the functions obtained by
applying complete graph preoperad and the symmetric preoperad (which
are functors) respectively to θ.

Remark 3.5.15 The PO in the name of the PO preoperad stands for partially
ordered, and indeed each Kn is a poset. We say that (µ, σ) ≤ (ν, τ) if for all
i < j either θ∗(µ, σ) = θ∗(ν, τ) or µij < vij.

An En-cellular preoperad is an operad which in the following precise sense
admits a cellular decomposition partially ordered by the PO-preoperad.

Definition 3.5.16 A preoperad O over Top is called a cellular E∞-preoperad if
the S2–space O2 has a cellular K2–decomposition (O(p)

2 )p∈K2 (in the sense
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of Definition 3.5.12 and Remark 3.5.15), where the actions of S2 on O2 and
K2 are compatible. We require that this decomposition satisfies the two
following conditions.

• For all n > 0 and all p ∈ Kn, the object

O(p)
n :=

⋂
1≤i<j≤n

(θ∗ij)
−1(O

θ∗ij(p)
2 ),

is contractible, and for all p, q ∈ Kn, with p ≤ q the natural inclusion
O(p)

n ⊆ O(q)
n is a cofibration in the Quillen model structure on Top. In

other words (O(p)
n )p∈Kn forms a cellular Kn-decomposition of On in

the sense of Definition 3.5.12.

• Each Sn–orbit of On contains an ordered point, that is a point x ∈ On

whose projections θ∗ij(x) are in the interior of cells of the form O(µ,id2)
p .

Definition 3.5.17 A reduced operad P is called a cellular E∞-operad if the
underlying preoperad is cellular E∞, and such that the operad composition
map is preserves the cellular structure, in the sense that

γ(P
(µ,σ)
n ×P

(µ1,σ1)
i1

× · · · ×P
(µn,σn)
in

) ⊆P
(γ(µ,µ1,...,µn),γ(σ,σ1,...,σn))
i1+···+in

The complete graph operad possess a natural filtration

Ks
n = {(µ, σ) : µij < s for all i < j} (3.12)

This induces the following filtration any given cellular E∞–preoperad O

O(k) =
⋃

q∈Kk
n

O(q)
n .

Preoperads of the form O(k) are called cellular Ek–preoperads, and operads
which have underlying preoperads of the form O(k) are called cellular Ek–
operads.

Example 3.5.18 We can show that, up to weak equivalence of operads, the
little n-discs operad is a cellular En-operad. We construct the cellular decom-
position as follows.

First we replace the little n-discs operad with the little n-cubes operad Cn(see
Remark 2.4.8), to which it is weakly equivalent. In particular, we shall study
the E∞-little cubes operad, C∞. We recall that this is defined as the colimit

C1 ↪→ C2 ↪→ · · · ↪→ Ci ↪→ · · · ↪→ C∞.

where the embeddings are all along the equator.
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For (c1, c2) ∈ C∞(2), we write c1 ∼µ c2 if there exists an i ≤ µ + 1 such that
c1 and c2 are separated by a hyperplane perpendicular to the ith-axis. If the
first i such that is true is µ + 1 itself, we further require that the cube c1 lies
on the negative side of Hµ+1 and c2 lies on the positive side. In this very
particular case, we write c1 ∼′µ c2. It is now easy to define the cell structure
on C∞(n). For (µ, σ) ∈ Kn we let

C∞(n)(µ,σ) = {(c1, c2, . . . , cn) : ci ∼µij cj if σ(i) < σ(j) and cj ∼µij ci if σ(j) < σ(i)}.

Almost all the requirements for C∞ to be an E∞-cellular operad are now
clearly satisfied. The only property that takes some work is verifying that
these cells C∞(n)(µ,σ) are contractible.

To prove this it is necessary to distinguish between the case where the inte-
rior of the cell is empty (the cell is proper), and that when it is not (improper).
We shall focus on the latter case first. Let (c1, . . . , cn) be an interior point of
C∞(n)(µ,σ). Then, ci ∼′µij

cj if σ(i) < σ(j) and cj ∼′µij
ci if σ(j) < σ(i). Now, if

(µ, σ) ∈ K(p)
n , consider the natural projection

π : C∞(n)(µ,σ) → C∞(n)(µ,σ) ∩ Cp(n).

This is a Serre fibration with contractible fibres, and therefore, by the long ex-
act sequence in homotopy, we need only show that the image is contractible.
To this end, note that we can contract the whole image to π((c1, . . . , cn)) =
(c̄1, . . . , c̄p) in n coordinate-wise steps, where we start with the last coordi-
nate and end with the first, and we deform in affine manner. Our choice of
order here ensures that the appropriate hyperplanes separating cubes exist
at all times, and so the contraction always stays within C∞(n)(µ,σ).

It remains to be shown that the cells with no interior are contractible. In-
deed, something stronger is true; each cell C∞(n)(µ,σ) contains proper subcell
C∞(n)(µ̂,σ̂), such that

C∞(n)(µ,σ) = C∞(n)(µ̂,σ̂).

The proof of this is left as an exercise to the reader.

The projection π is thus a weak equivalence between the suboperad C(n)∞ and
Cn, as desired.

Proposition 3.5.19 For each k, the geometric realization of the Barratt-Eccles Ek-
operad is a cellular Ek-operad, In particular, the simplicial operad is realized as a
cellular E∞-operad.

Proof We are going to construct a decomposition of the simplicial operad
into simplicial subsets. When we pass to the geometric realisation, these
shall form cells that exhibit |Γ| as a cellular E∞-operad.
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3. Simplicial sets

To start, recall that each simplex x ∈ Γ(r)n is an n + 1–tuple of elements
of Sr. We denote the last element in this tuple by σx. Then we have a
decomposition of Γ, indexed by (µ, σ) ∈ Kp, given by

Γ(p)(µ,σ) = {x ∈ Γp : ∀i < j, θ∗ij(x) ∈ skµij Γ(2) and θ∗ij(x) = θ∗ij(σx) if

θ∗ij(x) /∈ skµij−1 Γ(2)}.

These simplicial subsets are realizable as cells in the sense of Definition
3.5.12. This is because cell-inclusions are cofibrations in the Kan-Quillen
model structure and hence their geometric realizations must also be cofibra-
tions. Furthermore, we have a simplicial contraction in the sense of Remark
3.4.13 which is given by considering the function

h : Γ(p)(µ,σ)
n → Γ(p)(µ,σ)

n+1

(σ0, σ1, . . . , σn) 7→ (σ0, σ1, . . . , σn, σ)

and then setting hi = h for 0 ≤ i ≤ n. So we see the geometric realization
of Γ(p)(µ,σ) is contractible and so (|Γ(p)(µ,σ)

n |)(µ,σ)∈Kn forms a cellular Kn-
decomposition of |Γ(p)|. So we have verified the first condition of Definition
3.5.16.

To check the second condition, it suffices to observe that a point in |Γ(p)| is
ordered if it is contained in the realization of a simplex of Γ(p) which has
idp as its last component. In particular, every Sp-orbit of |Γ(p)| contains one
such point. Therefore |Γ(p)| is a cellular E∞ preoperad.

We now need to check that multiplication preserves cellular structure. It
follows from the definition of the simplicial operad that γΓ = W(γAssoc)
(where W is the universal bundle construction). From this we easily obtain
the following identities

θ∗
ϕ−1

r (i),ϕ−1
r (j)(γ

Γ(x, x1, . . . , xn)) = θ∗i,j(xr) for i, j ∈ ir.

θ∗
ϕ−1

r (i),ϕ−1
s (j)(γ

Γ(x, x1, . . . , xn)) = θ∗r,s(x) for i ∈ ir, i ∈ is, r < s.

Therefore cellular structure is preserved as desired and so the simplicial
operad is a cellular E∞-operad.

Lastly, the filtration on the simplicial operad induced by that of the graph
operad is exactly the Smith filtration. So the Barratt-Eccles Ek-operad is a
cellular Ek-operad as desired. �

The following theorem tells us that all cellular Ek-operads are essentially the
same.

Theorem 3.5.20 (Fiedorowicz [2]) Any two cellular Ek-operads are weakly equiv-
alent as operads.
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3.5. The Barratt-Eccles En-operad

Remark 3.5.21 We shall not write out a detailed proof of this theorem. The
key idea though is that all cellular E∞-operads admit a retract onto the geo-
metric realization of the nerve of the complete graph operad |N (K)| (note
that the nerve functor preserves limits, so this is indeed an operad), and
thus we can always find a zig-zag between them.

As |Γ(k)| is a cellular Ek-operad, and Dk is weakly equivalent to one, it im-
mediately follows from Theorem 3.5.20 that that little k-discs operad and
the |Γ(k)| are weakly equivalent. Therefore, as promised earlier, the Barratt-
Eccles Ek-operad is a small simplicial model of the little k-discs operad.

While we have been using the idea of weak equivalence for operads for quite
a while now, we have neglected to fully explain the model structure behind
it, or indeed why it is a useful notion. This gap in our understanding will
be remedied in the next chapter.
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Chapter 4

The homotopy theory of operads

Homotopy algebras were originally defined by Jim Stasheff [30] during the
1960s in order to study H-spaces. Since then, they have grown into a central
object of interest, not just algebraic topology, but in modern mathematics
as whole [17]. The principal goal of this section is to develop the theory of
homotopy algebras over an operad. The best known examples of these are
the A∞-algebras, which are homotopy algebras over the associative operad.
Intuitively these are algebras that are ‘almost’ associative, or, more precisely,
are associative up to a series of coherent homotopies. This is a phenomenon
that occurs quite a lot in nature. For example, path composition in classical
homotopy theory is an operation that is not strictly associative but is only
associative up to homotopy.

In order to define homotopy algebras over operads, we will need to first
define a model structure on (well-behaved) operads. For any sufficiently
well-behaved operad P , we will be able to define a homotopy P-algebra as
an algebra over a cofibrant replacement of P within this model structure.

In order for a homotopy P-algebra to be a tractable notion, it is thus nec-
essary to be able to compute cofibrant replacements in this model category
of operads. Fortunately, a convenient cofibrant replacement functor called
the Boardman–Vogt resolution (or W-construction) exists, and is described
in Section 4.3. In the modern theory of dendroidal sets [24], the Board-
man–Vogt resolution is also used to extend the notion of a nerve from cate-
gories to operads. Unfortunately the details of this lie beyond the scope of
this text.

The structure of our discussion is as follows. In Section 4.1, we shall de-
scribe how to transfer the model structure from an ambient category to the
category of operads over it. We shall also define homotopy algebras. We
shall follow this up in Section 4.2 with a brief detour into the land of free op-
erads. These shall be necessary to construct the Boardman-Vogt resolution
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4. The homotopy theory of operads

in Section 4.3. The final section (Section 4.4) will consist of explicit calcu-
lations, describing the Boardman-Vogt resolution in a number of cases; the
associative operad in topological spaces (Subsection 4.4.1), the associative
operad in simplicial sets (Subsection 4.4.2), and the Barrett-Eccles En-operad
(Subsection 4.4.3).

4.1 The model category of operads

Operad theory always takes place over an ambient symmetric monoidal cat-
egory. In this section we are going to show that any sufficiently nice sym-
metric monoidal category (C,⊗) equipped with compatible model category
structure induces a canonical model structure on operads over it, called the
Berger-Moerdijk model structure.

The first question to ask ourselves is; what conditions characterise a suffi-
ciently nice symmetric monoidal category? ‘Niceness’ is encapsulated by
the condition that the hom functor of any two objects should remain in the
category.

Definition 4.1.1 Suppose that (C,⊗) is a symmetric monoidal category. An
internal hom is a functor

[−,−] : Cop × C → C

such that, for all X ∈ C the functor [X,−] is left adjoint to the functor −⊗X.
In this case we say that C is closed.

We have already seen several examples of closed categories. Both Top and
Set4 can be equipped with this structure by taking the internal hom to be
their respective mapping spaces.

Let (C,⊗,W , C,F ) be a closed symmetric monoidal category equipped with
a model structure. Compatibility between the model structure and the ten-
sor product is captured by the pushout-product condition. This states that if
f : A ↪→ B and g : X ↪→ Y are cofibrations then

A⊗Y
⊔

A⊗X

B⊗ X → B⊗Y

is as well. Moreover this is an acyclic cofibration if and only if one of f or g
is.

Definition 4.1.2 Let (C,⊗,W , C,F ) be a symmetric monoidal category equipped
with a model structure. If C satisfies the pushout-product condition we say
that C is a symmetric monoidal model category.
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4.1. The model category of operads

The pushout-product condition implies that a cofibration (or an acyclic cofi-
bration) that is tensored with a cofibrant object remains a cofibration (or an
acyclic cofibration).

To proceed we must to be able move a model category structure through an
adjunction. Therefore we shall next introduce the Transfer Principle which is
a list of sufficient conditions for this to be possible. One of these conditions
is that the category is cofibrantly generated, a term which we now define.

Definition 4.1.3 An object A of a category C is said to be small if for all
diagrams X in C of the form

X1 → X2 → · · · → Xi → · · · ,

the natural functions Xi → colim X induce a bijection

colimn∈N HomC(A, Xn)→ HomC(A, colimn∈N Xn).

Definition 4.1.4 A model category is cofibrantly generated if the category is
cocomplete and admits a set of cofibrations and a set of acyclic fibrations,
both with small domains such that the fibrations are characterized by their
right lifting property with respect to the generating acyclic cofibrations and
the acyclic fibrations are characterized by their right lifting property with
respect to the generating cofibrations.

In general, almost all model structures of interest to mathematicians are
cofibrantly generated. For example, both Set4 and Top are.

Example 4.1.5 It is very easy to see that the category Set4 with the Kan-
Quillen model structure is cofibrantly generated. The generating cofibra-
tions are the horn inclusions ∂4n ↪→ 4n for n ∈ N. The generating acyclic
cofibrations are the horn inclusions Λn

k ↪→ 4n for n ∈N and n ≥ k ≥ 0. The
geometric realisations of these morphisms also exhibit Top with the Quillen
model structure as cofibrantly generated.

Definition 4.1.6 Let X be an object in a model category C. A path-object for
X is a factorisation of the diagonal

X Path(X) X× X∼

into a weak equivalence followed by a fibration.

We are now in a position to state the transfer principle.

Theorem 4.1.7 (Transfer Principle) [4, Section 2.5] Let F : C � D : G be an
adjunction with C a cofibrantly generated model category and D a category with
small colimits and finite limits. Define a map f in D to be a weak equivalence
(resp. fibration) if and only if G( f ) is a weak equivalence (resp. fibration). Then
provided that the following conditions are met this defines a cofibrantly generated
model structure, called the transferred model structure, on D.
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4. The homotopy theory of operads

• The functor F preserves small objects.

• With respect to the definition of a fibration above in D above, D has functorial
fibrant replacement.

• With respect to the definition of a fibration in D above, D has functorial
path-object replacement for fibrant objects.

Remark 4.1.8 The form of the transfer principle stated above can be im-
proved considerably. In the first condition, small can be weakened to λ-small
for any regular cardinal λ. The final two conditions can be replaced with the
single requirement that any sequential colimit of pushouts of images under
F of the generating acyclic cofibrations of C yields a weak equivalence in D.
In practice these conditions are very difficult to verify directly, and that is
why we use the formulation above.

Returning now to our main purpose, we shall use the Transfer Principle to
construct a model structure on the category of S-modules.

Let (C,⊗,W , C,F ) be a closed symmetric cofibrantly generated monoidal
model category and G be a discrete group. We denote the category of objects
of C equipped with a right G-action by CG. The morphisms in this category
are the equivariant maps. The monoidal structure on C descends to CG via
the diagonal action of G on the tensor product. It remains closed because G
acts by conjugation on the internal hom.

Let F : CG → C be the forgetful functor. This admits a left adjoint, the free
functor F : C→ CG. The model structure transfers across this adjunction as
the conditions of the transfer principle are trivially satisfied. Thus CG has
an induced model structure.

Taking G = Sn we see that from the above discussion we have a model
structure on the category of S-modules, viewed as the product categoryd

n≥0 CSn . We transfer this structure to the category of operads using the
forgetful functor – free functor adjunction between the categories of operads
and S-modules. Concretely, a morphism of operads f : P → Q is a fibration
(resp. weak equivalence) if and only if the induced map P(n) → Q(n) is a
fibration (resp. weak equivalence) in the category CSn for all n ∈N0.

Unfortunately, in general the theory we have developed behaves badly. In
particular, given an operad P it is easy to see that the initial object in the cat-
egory of P-algebras is P(0). Therefore the category of P-algebras under
a given P-algebra A is equivalent to the category of algebras over another
operad Q such that Q(0) = A. Thus the general homotopy theory of oper-
ads subsumes the homotopy theory of algebras over a given operad, which
is well-known to be extremely badly behaved. To remedy this we will con-
sider only reduced operads.
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4.1. The model category of operads

Definition 4.1.9 An operad P in a monoidal category C with unit I is said
to be reduced if P(0) = I. A morphism of reduced operads is an operad
morphism Φ : P → Q between reduced operads such that ϕ(0) is the
identity on I.

One might naively think that in a manner exactly analogous to that outlined
above, we could transfer the homotopy structure from the ambient category
C to that of reduced operads. For most part one would be correct. The only
condition that presents difficulty, and in fact is not necessarily true, is the
existence of functorial path-objects in the operad category. To ensure this,
we require that C admits a Hopf interval.

Definition 4.1.10 A Hopf object in a symmetric monoidal category (C,⊗) is
an object (H, µ, ν,4, ε) such that (H, µ, ν) is a monoid, (H,4, ε) a comonoid
and µ, ν are maps of comonoids and 4, ε are maps of monoids.

Example 4.1.11 The unit I in a symmetric monoidal category C is a Hopf
object, by the canonical isomorphism I ⊗ I → I and its inverse. The co-
product I t I also possesses a Hopf object structure. Both the product and
coproduct on I t I are induced componentwise by the product and coprod-
uct on I. One can check that the folding map I t I → I commutes with the
relevant products and coproducts and is thus a morphism of Hopf objects.
We say that C admits a Hopf interval if the folding map can be factored into
a cofibration followed by a weak equivalence

I t I H I∼

where H is a Hopf object and both maps are morphisms of Hopf objects.

As the reader has probably already guessed from its definition, the existence
of a Hopf interval allows one to construct a functorial path-object for fibrant
objects. Everything we have stated and proved in this chapter can therefore
by encapsulated in the following theorem.

Theorem 4.1.12 [4, Theorem 3.1] Let (C,⊗,W , C,F ) be a closed symmetric monoidal
cofibrantly generated model category with unit I such that

1. I is cofibrant

2. the over-category C/I has a symmetric monoidal fibrant replacement functor

3. C admits a commutative Hopf interval.

Then there is a cofibrantly generated model structure on the category of reduced
operads, in which a morphism of reduced operads f : P → Q is a fibration (resp.
weak equivalence) if and only if the induced map P(n)→ Q(n) is a fibration (resp.
weak equivalence) in the category CSn for all n ∈N0.
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4. The homotopy theory of operads

Remark 4.1.13 This theorem comes with a warning. To verify that a map
is a fibration or a weak equivalence, or that an object is fibrant is very easy.
We just need to apply the forgetful functor and then check the relevant prop-
erty in the underlying category of S-modules. For questions of cofibrancy
this does not work. It is thus important to distinguish between two related
notions of operadic cofibrancy. An operad can be cofibrant in the operadic
model sense of Theorem 4.1.12, in which case we just call it cofibrant. How-
ever an operad P can have an cofibrant underlying S-module but not nec-
essarily be operadically cofibrant. We say that an operad that is cofibrant in
this second sense is S-cofibrant.

Remark 4.1.14 The proof of Theorem 4.1.12 is quite easy; one only needs
to check the conditions of the Transfer Principle are satisfied. The fibrant
replacement condition is immediate, one only needs to apply the fibrant re-
placement functor in each arity. Functorial path-object replacement requires
convolution operads, which is a topic beyond the scope of this text. For a
complete treatment, please see [4].

Theorem 4.1.12 is generally the situation of most interest in applications, be-
cause most operads seen in the everyday life of a mathematician are reduced.
It is not the only situation in which the transfer principle may be employed
though.

Definition 4.1.15 A monoidal category (C,⊗) is called Cartesian if the monoidal
product coincides with the category-theoretical product.

Theorem 4.1.16 [4, Theorem 3.2] Let (C,⊗,W , C,F ) be a symmetric, Cartesian,
cofibrantly generated, closed model category with unit I such that

1. I is cofibrant

2. the over-category C/I has a symmetric monoidal fibrant replacement functor

Then there is a cofibrantly generated model structure on the category of reduced
operads, in which a morphism of reduced operads f : P → Q is a fibration (resp.
weak equivalence) if and only if the induced map P(n)→ Q(n) is a fibration (resp.
weak equivalence) in the category CSn for all n ∈N0.

We end this section with the definition of an ∞-algebra (or a homotopy al-
gebra). As mentioned in the chapter introduction, given an operad P , we
would like to study algebras that have an action of the P operad, but po-
tentially not a strict one. The easiest example of this is one dimensional
loop composition ◦. Given a topological space X and three based loops
α, β, γ : S1 → X, the 3-fold composites (α ◦ β) ◦γ : [0, 1]→ X and α ◦ (β ◦γ) :
[0, 1] → X will not be equal, but will be homotopic. When we start with 4
loops instead of 3, things get more interesting. Up to permutation, there are
5 ways we can compose them. We will have homotopies between every pair
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of composites, and homotopies between these homotopies. We can clearly con-
tinue like this. Informally, all this data, compositions, homotopies between
compositions, homotopies between homotopies between compositions etc.
determine a homotopy associative algebra. We shall return to this precise
example in Subsection 4.4.1, For now, we shall see how to formalise this
intuition.

Definition 4.1.17 Let P be a reduced operad over a category C satisfying
the hypotheses of Theorem 4.1.12 (or alternatively Theorem 4.1.12). Let
P co f ib be a cofibrant replacement for P in the model structure on operads.
A P∞-algebra, or a homotopy P-algebra, is an algebra over P co f ib.

Remark 4.1.18 This definition is motivated by Theorem 2.1.13. It is the usual
trick of passing to the cofibrant replacement to ensure that every algebra
morphism in the homotopy category is represented in the model category.
We also usually require the endomorphism operad to be by definition fi-
brant.

4.2 The free operad

This section is devoted to giving the very concrete combinatorial description
of the free functor between S-modules and operads that we used above. This
is of interest in its own right, but it also allows us to introduce a lot of the
constructions, theory and examples that we will need in the next section
when we study cofibrant replacements in the operad category.

The basic combinatorial objects we shall be working with are planar trees.

Definition 4.2.1 A planar tree T is a directed connected graph with no loops,
which has the following properties.

• T has an output vertex and edge, that is a distinguished root vertex of
valency 1 and its attached edge which must be incoming.

• T has some number of input vertices and edges, that is vertices of
valency 1 and their attached edges which must be outgoing. These
and the input vertices and edges are collectively referred to as external.

• Every other vertex and edge of T is referred to as internal. It must have
exactly 1 outgoing edge.

Remark 4.2.2 Perhaps confusingly, it is standard in the literature to refer to
internal vertices with exactly one incoming edge as unary. Such vertices of
course also have an outgoing edge.

We illustrate the definition of a planar tree by drawing the third corolla t3
in Figure 4.1. The only internal vertex is labelled with an i and the external
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e

i

e e e

e

e e e

Figure 4.1: The corolla t3
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Figure 4.2: Partial composition in T

edges are labeled with an e. Because external vertices are always attached
to external edges, it is simpler to omit them. In the figure we have adopted
this convention, but indicated where each missing vertex ‘should’ be with a
floating e. We refer to the vertex that the output edge is outgoing from as
the internal root vertex.

Planar trees give rise to one of the most important combinatorial operads,
the operad of planar trees.

Definition 4.2.3 Let T be the operad in sets whose underlying S-module
structure in arity n is given by the collection of planar trees with exactly n
input edges labelled from the set {1, · · · , n}. The right symmetric action is
given by permutation of these labels. Suppose that T ∈ (r) and Ti ∈ (ni) for
r ≥ i ≥ 1. Then the composition γ(T, T1, . . . , Tn) is computed as follows.

1. For each i, let Si be the tree isomorphic to Ti, but with its input edges
labelled from the set {n1 + · · · , ni−1 + 1, . . . n1 + · · · + ni}. This is
achieved by adding n1 + · · · + ni−1 to the label of each input edge
of Ti.

2. For each i, grafting the tree Si onto T at the label i and replacing the
joining→ • → of two external edges at an external vertex with a single
edge→.

3. This produces the desired tree γ(T, T1, . . . , Tn) which has input edges
labelled from the set {1, n1 + · · ·+ nr}.

The identity IT is the tree in T(1) with no internal vertices, and with one
output edge which is also the input edge.

62



4.2. The free operad

One can look to figure 4.2 to see a visual example of partial composition of
two elements of T. It is clear that every tree in T can be built recursively
by iterative composition starting with the identity tree IT and the n-corollas
tn for all n ≥ 1. This enables us to make inductive arguments about trees,
something that will be a frequent trope in what will follow. The definition
of the automorphism group illustrates this principle.

Definition 4.2.4 Let T ∈ T be a planar tree. Up to isomorphism, for some
k ∈N, T can be represented as

T := γ(tk, T1
1 , . . . , T1

i1 , T2
1 , . . . , T2

i2 , . . . , Tn
in
)

where Tk
1 , . . . , Tk

ik
are copies of the same tree. Then the automorphism group

Aut(T) is defined by first setting Aut(tn) = Sn for all n ∈ N, and then
recursively defining

Aut(T) := (Aut(T1
1 )
×i1 × · · · ×Aut(Tn

1 )
×in)o (Si1 × · · · × Sin)

where Sip acts on Aut(Tp
1 )
×ip , for each p, by permuting the factors in the

product.

Remark 4.2.5 It is important to gain an intuition for what the

T = γ(tk, T1
1 , . . . , T1

i1 , T2
1 , . . . , T2

i2 , . . . , Tn
in
)

decomposition means, as we will be using it a lot. Essentially, the internal
root vertex and its immediate children form a copy of tk within T. Mean-
while, each child vertex of the internal root vertex of T is the internal root
vertex of a smaller subtree, which is one of the respective Tl

m.

One way to view the free m-ary operation on the data of an S-module P is
a tree T with m input edges and with each internal vertex decorated with
elements of P(n), where n its the number of incoming edges. This should
be viewed as using n-ary operation to compose the operations decorating
those vertices from which these edges originate. The best way to formally
codify this idea is the following definition.

Definition 4.2.6 Given any S-module P over a category C, one defines a
(contravariant) functor P : Top → C inductively as follows. We fix P(IT) =
IC and

P(γ(tn, T1, T2, . . . , Tn)) = P(n)⊗P(T1)⊗ · · · ⊗P(Tn).

where tn is the n-corolla. Given a tree isomorphism f : T → T′ we decom-
pose both trees as T = γ(tn, T1 . . . , Tn) and T′ = γ(tn, T′1, . . . , T′n) for some
n ≥ 1. The action of f decomposes into an action on tn, denoted σ ∈ Sn,
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which permutes the Ti, and a collection of tree isomorphisms fi : Ti → T′σ(i).
We define

P( f ) : P(n)⊗P(T1)⊗ · · · ⊗P(Tn)→P(n)⊗P(Tσ(1))⊗ · · · ⊗P(Tσ(n))

as the morphism that acts by the right action of σ on P(n) and by the
(recursively defined) morphism P( fi) on P(Ti).

Theorem 4.2.7 [5] The free operad F (P) can be computed as

F (P)(n) =
⊔

[T],T∈T(n)

P(T)⊗Aut(T) I[Sn]

Here, [T] ranges over the isomorphism classes of planar trees in T, and I[Sn] is
equal to

⊔
σ∈Sn

IC equipped with the obvious S-action. The group Aut(T) acts on
Sn because a permutation of T induces a permutation of the labelled input vertices
of T. This obviously extends to the action on I[Sn] that we see in the equation.

The operadic composition map

γ : F (P)(r)⊗
r⊗

i=1

F (P)(ni)→ F (P)(n1 + · · · nr)

is inclusion.

The following lemma follows from the pushout-product condition.

Lemma 4.2.8 Let P be an S-module. If P is cofibrant then F (P) is S-cofibrant.

We shall now introduce a slight variant of the free operad, which we shall
use in the construction of Boardman-Vogt resolution in the next section. The
extra condition that we shall need to impose is that the operad is well-pointed.

Definition 4.2.9 An S-module P is said to be pointed if it is equipped with
a base point I → P(1). We write S∗Mod for the category consisting of S-
modules and pointed morphisms between them. Pointed S-modules such
that the base point morphism I → P(1) is a cofibration are called well-
pointed. We also refer to operads as well-pointed if their underlying S-
module is.

As every operad has a unit there is a forgetful functor from operads to
S∗Mod. We define the free pointed functor F∗ as its left adjoint. The key
difference between F∗ and F is that the unit of F is added freely whereas
for F∗ the unit of the S-module becomes the operadic unit. Thus, if we let I
be the initial operad in C and Î be the S-module defined by Î(i) equal to I
if i = 1 and 0 otherwise (note that this is the underlying S-module of I), F∗
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4.3. The Boardman–Vogt resolution

will be the following pushout.

F ( Î) F (P)

I F∗(P).

(4.1)

One can easily prove the following.

Lemma 4.2.10 For any well-pointed cofibrant S-module P of a cofibrantly gener-
ated monoidal model category C, the operad F∗(P) is cofibrant.

Proof Since Î → P is a cofibration of S-modules, we know that F∗( Î) →
F∗(P) is a cofibration of operads. The property of being a cofibration is
invariant under pushouts, and so it follows from Diagram 4.1 that F∗(P) is
cofibrant as an operad. �

4.3 The Boardman–Vogt resolution

As we saw in Section 4.1, a morphism of operads, over some ambient cate-
gory C, is fibrant or a weak equivalence if and only if the underlying mor-
phism of S-modules is fibrant or a weak equivalence. Therefore questions
involving these can be dealt with using only the tools of C. Cofibrancy is
a less directly tractable property and thus we need an alternative way to
understand it. This is also quite important from the perspective of explic-
itly constructing ∞-algebras. It turns out that for a special class of operads
one can construct a cofibrant replacement functor called the Boardman–Vogt
resolution or the W-construction.

As we shall see, the actual construction is extremely technical but the intu-
ition behind it is fairly simple. We have already seen that, given an arbitrary
pointed operad P that is cofibrant as an S-module, F∗(F∗(P)) will be cofi-
brant as an operad, where F∗ is the forgetful functor that is right adjoint to
F∗.

We are going to combinatorially construct a factorisation of the counit of
the free–forgetful adjunction. With some assumptions on the operad P , the
factorisation

F∗(F∗(P)) W(P) P∼

will be a weak equivalence followed by a cofibration. Thus W(P) is a cofi-
brant replacement of P .

Definition 4.3.1 An interval in C is a factorisation I t I H I∼

of the folding map into a cofibration (0, 1) followed by a weak equivalence
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ε, together with an associative operation ∨ : H⊗ H → H such that all of the
following diagrams commute.

I ⊗ H H ⊗ H H ⊗ I

H
∼

0⊗H

∨

H⊗0

∼

I ⊗ H H ⊗ H H ⊗ I

I ⊗ I I H I I ⊗ I

I⊗ε

1⊗H

∨

H⊗1

ε⊗I

∼ 1 1 ∼

H ⊗ H I ⊗ I

H I

∨

ε⊗ε

∼

ε

I H

H I

id∨

0

ε

ε

Next we shall construct an n-cube H(T) associated to every tree T with n
internal edges. By virtue of its construction we shall have inclusion maps
into this cube from H(T′) for every tree T′ that can be made from T by
contracting edges and these inclusions glue together nicely, in the sense that
if T′′ is a contraction of T′ then the two inclusions H(T′′) ↪→ H(T) and
H(T′′) ↪→ H(T′) ↪→ H(T) agree.

Definition 4.3.2 Let T be a planar tree with set of internal edges E(T) of
cardinality k. We shall assume that we have chosen a consistent convention
for ordering E(T). We define

H(T) =
⊗

e∈E(T)

H.

Remark 4.3.3 Given a tree T, we can fix any ordering of internal edges at
all for our consistent convention for ordering E(T). The only reason for
requiring it in the first place is that when we write products like

⊗
e∈E(T) H

where the order of factors is important, we want the ith factor in the product
to always corresponds to the same internal edge.

Remark 4.3.4 One should observe that the symmetries of T give H(T) an
automatic right Aut(T)-action.
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4.3. The Boardman–Vogt resolution

Definition 4.3.5 Let T be a planar tree and let D be a subset of its set of
internal edges E(T). We define

HD(T) =
⊗

e∈E(T)

He

where

He =

{
I if e ∈ D.
H otherwise.

We further define
H−(T) =

⋃
D 6=∅

HD(T)

Remark 4.3.6 Let T/D be the tree obtained by contracting the edges in D.
Then there is clearly a natural isomorphism

HD(T) H(T/D).∼

This extends to an acyclic cofibration

HD(T) ↪→ H(T)

where we apply 0 : I → H to He if e ∈ D and the identity morphism
otherwise. The pushout-product condition tells us that the induced map

H−(T) ↪→ H(T).

is an acyclic fibration.

The next two definitions concern arity 1 operations. Essentially these defi-
nitions allow us to ignore vertices with only one input edge during explicit
computations. Informally, we just eliminate any such vertices by operadic
composition.

Definition 4.3.7 If c is a nonempty set of unary (meaning having exactly
one incoming edge) internal vertices of a tree T, there is a map

rc : H(T)→ H(T/c)

where T/c is given by removing each vertex of c and connecting the incom-
ing and outgoing edge. This map is given in terms of ∨ : H ⊗ H → H for
vertices connecting two internal edges and ε : H → I for vertices connecting
an internal and external edge.
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4. The homotopy theory of operads

Definition 4.3.8 Let T′ be the set consisting of pairs (T, c), where T ∈ T and
c is a nonempty set of unary internal vertices of T. We recursively define a
function P c : T′ → C as follows. We fix P c(IT) = I and define

Pc(γ(tn, T1, . . . , Tn)) =

{
I ⊗Pc(T1)⊗ · · · ⊗Pc(Tn) if x ∈ c;
P(n)⊗Pc(T1)⊗ · · · ⊗Pc(Tn) otherwise.

where x is the internal root vertex of tn.

Remark 4.3.9 For all nonempty sets c, d of unary vertices in T with c ⊆ d, by
the pushout-product condition the unit u : I → P(1) induces a cofibration
Pd(T)→Pc(T). Let us write (observing that P∅ = P(T))

P∗(T) =
⋃

c 6=∅
Pc(T)

where c ranges over all the nonempty sets of unary vertices in T and the
union is interpreted as the colimit over all cofibrations Pd(T) → Pc(T) for
c ⊆ d. An application of pushout-product condition shows that the induced
map

P∗(T)→P(T)

is an Aut(P)-cofibration for every well-pointed cofibrant operad P .

We can now put these definitions together to create the W-construction.
There are two distinct parts to this. First, we shall define the S-module
structure and then we shall define the operadic composition maps.

Definition 4.3.10 Let H be an interval. For any operad P we shall construct
the operad W(H, P) as the colimit of acyclic cofibrations of S-modules.

W0(H, P) ↪→W1(H, P) ↪→W2(H, P) ↪→ · · · (4.2)

The reader should be somewhat confused by this because we have not yet
said what Wi(H, P) is. Intuitively, Wi(H, P) is the dimension i − 2 compo-
nent of W(H, P); the part corresponding to trees with at most i internal
edges.

More formally, we construct Wi(H, P)(n) by induction on i. For the base
case, that is i = 0, we set

W0(H, P)(n) := P(n)

for all n ≥ 0.

Now suppose that i > 0 and that Wi−1(H, P) has been defined already. We
shall also suppose that that we have a canonical map

αS : (H(S)⊗P(S))⊗Aut(S) I[Sn]→Wi−1(H, P)(n)
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4.3. The Boardman–Vogt resolution

for each tree S with at most i− 1 internal edges and n input edges. (Recall
that P is the functor that we used in the construction of the free functor F .)
When i = 0, these maps are

• When n = 1, αIT
is the unit map I →P(1)

• When n > 1, αtn is the identity map P(n)→P(n).

Notation 4.3.11 For notional simplicity we shall introduce the following
shorthand

(H ⊗P)−(T) := (H−(T)⊗P(T)) ∪H−(T)⊗P∗(T) (H(T)⊗P∗(T)).

Remark 4.3.12 By the pushout-product condition the inclusion map

(H ⊗P)−(T) ↪→ H(T)⊗P(T)

is a cofibration.

Our next step shall be to use the maps αS to construct a Sn-equivariant map

α−T : (H ⊗P)−(T)⊗Aut(S) I[Sn]→Wi−1(H, P)(n). (4.3)

Construction 4.3.13 (The construction of α−
T ) For every nonempty set D of

internal edges define βD as the composite

(HD(T)⊗P(T))⊗Aut(T) I[Sn]→ (H(T/D)⊗P(T/D))⊗Aut(T) I[Sn]
αT/D−−→Wi−1(H, P)(n)

where the first map is induced by both

• the isomorphism HD(T)→ H(T/D).

• the partial operad composition map P(T)→P(T/D).

Taking all choices of D we produce an Sn-equivariant map

βT : (H−(T)⊗P(T))⊗Aut(T) I[Sn]→Wi−1(H, P)(n). (4.4)

x 7→ (
⋃

D 6=∅
βD)(x) (4.5)

In an analogous manner, for each nonempty set c of internal unary vertices
of T, the isomorphism Pc(T) → P(T/c) and the map H(T) → H(T/c) of
Remark 4.3.7 together induce a map

αc
T : (H(T)⊗Pc(T))⊗Aut(T) I[Sn]→Wi−1(H, P)(n).

Once again these glue together over all possible nonempty choices of c to
produce an Sn-equivariant map

δT : (H(T)⊗P∗(T))⊗Aut(T) I[Sn]→Wi−1(H, P)(n). (4.6)

The maps βT and δT glue together to give α−T .
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4. The homotopy theory of operads

Now we take the coproduct over all isomorphism classes of trees T with n
input edges and i internal edges, and construct the following pushout.

⊔
[T],T∈T(n,i)(H ⊗P)−(T)⊗Aut(T) I[Sn] Wi−1(H, P)(n)

⊔
[T],T∈T(n,i)(H(T)⊗P(T))⊗Aut(T) I[Sn] Wi(H, P)(n)

⊔
α−T

⊔
αT

(4.7)

This defines both Wi(H, P) and the maps αT. Each inclusion Wi−1(H, P)→
Wi(H, P) is a acyclic cofibration in the model structure on Sn-modules, be-
cause it is the pushout of one.

Now we define W(H, P) as in Definition 4.3.10 and one observes that
P(n) = W0(H, P) → W(H, P)(n) is the composition of acyclic fibrations
and so is one itself.

Remark 4.3.14 If we work with reduced operads, the construction above is
somewhat simplified. In fact we are able to ignore all trees in T which have
unary (one input edge) vertices. This is easy to see, because if T has a unary
vertex then

P∗(T) = P(T).

It follows that

(H ⊗P)−(T) = (H(T)⊗P(T))⊗Aut(T) I[Sn].

The tree T thus contributes no extra structure to the pushout Wi(H, P)(n),
and so we lose nothing by omitting it.

Next we move on to describing the operad structure of W(H, P).

Composition in W(H, P) is induced by tree grafting in T. Given a tree T
with n input edges and n trees T1, . . . , Tn with ki input edges respectively,
one obtains a new tree T′ = γ(T, T1, . . . , Tn) with k = k1 + · · · + kn input
edges. The n input edges of T become internal edges of T′. Therefore there
is a map

H(T)⊗ H(T1)⊗ · · · ⊗ H(Tn)→ H(T)⊗ H(T1)⊗ · · · ⊗ H(Tn)⊗ In → H(T′).

where the first map is the canonical one and in the second map is induced by
1 : I → H on the newly created internal edges and the identity on everything
else.

Notation 4.3.15 For notational simplicity, we shall use the subscript λ[Ti] to
represent tensoring by −⊗Aut(T) I[Sn].
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4.3. The Boardman–Vogt resolution

There is a map

γ : (H(T)⊗P(T))λ[T] ⊗
n⊗

i=1

(H(Ti)⊗P(Ti))λ[Ti ] → (H(T′)⊗P(T′))λ[T].

which is induced by composition in the free operad P(T)⊗P(T1)⊗ · · · ⊗
P(Tn)→P(T′). The operad structure is determined by the unique require-
ment that the following diagram commutes

(H(T)⊗P(T))λ[T] ⊗
n⊗

i=1
(H(Ti)⊗P(Ti))λ[Ti ] W(H, P)(n)⊗

n⊗
i=1

W(H, P)(ki)

(H(T′)⊗P(T′))λ[T] W(H, P)(n).

γ

αT′

Theorem 4.3.16 Let C be a cofibrantly generated monoidal model category with
a cofibrant unit I and an interval H. Let P be a S-cofibrant well-pointed operad.
Then the counit of the adjunction between pointed S-modules and operads admits a
factorisation

F∗(P) W(H, P) P∼

into a cofibration f followed by a weak equivalence g. In particular, W(H, P) is a
cofibrant resolution for P .

The proof of this result will depend on the technical Lemma 4.3.18. This
lemma concerns the lifting properties of k-homomorphisms, a concept which
we now define.

Firstly let T1 and T2 be two trees of arity k1 and k2, and with n1 and n2
internal edges respectively. Choose an integer 0 ≤ i ≤ k1 and consider
T = T1 ◦i T2. Recall that this is tree obtained by grafting T2 onto T1 at the ith

input edges. The tree T has internal edges coming from T1, from T2 and an
extra input edge located at the grafting. There is a map

H(T1)⊗ H(T2)→ H(T)

where we apply 1 : I → H to obtain the copy of H coming from this new in-
ternal edge. It follows from the definition of P that there is an isomorphism
P(T1)⊗P(T2)→P(T). These glue into a natural map

γe :
2⊗

i=1

(H(Ti)⊗P(Ti))⊗Aut(Ti) I[Sni ]→ (H(T)⊗P(T))⊗Aut(T) I[Sn1+n2−1]

Secondly, observe that there is a map
n1⊔

j=1

P(n1)⊗P(n2)
◦−→P(n1 + n2 − 1)
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which for each j is given by the operadic partial composition map P(n1)⊗
P(n2)

◦j−→P(n1 + n2 − 1).

Definition 4.3.17 Let H be an interval and let P and Q be operads. A
0-homomorphism is a morphism of pointed S-modules

θ0 : W0(H, P)→ Q.

For n > 0, an n-homomorphism is a morphism of pointed S-modules θn :
Wn(H, P)→ Q with the following properties.

• The restriction of θn to Wk(H, P), for k < n, is a k-homomorphism.

• For all T = T1 ◦i T2 as directly above, the following diagram is commu-
tative.

⊗2
i=1(H(Ti)⊗P(Ti))⊗Aut(Ti) I[Sni ] (H(T)⊗P(T))⊗Aut(T) I[Sn1+n2−1]

⊔n1
i=1 Wk1(H, P)⊗Wk2(H, P) Wk(H, P)

⊔n1
i=1 Q(n1)⊗Q(n2) Q

γe

αT1⊗αT2 αT

θ1⊗θ2 θk1+k2+1

◦

Lemma 4.3.18 Let k > 0 and suppose the following square commutes,

Wk−1(H, P) Q

W(H, P) R

θk−1

χ

ω

where ω is an operad morphism, χ is an operadic acyclic fibration, and θk−1 is a
(k− 1)-homomorphism. Then there is a k-homomorphism θk, which when restricted
to Wk−1(H, P) is θk−1, and such that the following diagram commutes:

Wk(H, P) Q

W(H, P) R.

θk

χ

ω

Proof Let T be a tree with n input edges and k internal vertices. Let D be a
set of internal edges of T. For each internal edge e ∈ E(T), first we set

H+
e :=

{
I t I if e ∈ D.
H if e /∈ D.
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4.3. The Boardman–Vogt resolution

and then define
H+

D (T) :=
⊗

e
H+

e .

Observe that the maps I
0
↪−→ I t I

(0,1)
↪−−→ H and the identity map H → H

induce a sequence of cofibrations

HD(T) ↪→ H+
D (T) ↪→ H(T). (4.8)

Let
H+(T) :=

⋃
D 6=∅

H+
D (T).

The morphisms in Diagram 4.8 glue to produce following sequence

H−(T) ↪→ H+(T) ↪→ H(T). (4.9)

The maps in the sequence are cofibrations by the the pushout-product con-
dition. Because we have fixed a convention for ordering the internal edges
of T (Definition 4.3.2), both of these morphisms are equivariant under the
natural action of Aut(T). Next we define

(H(T)⊗P(T))+ := (H(T)+ ⊗P(T)) ∪(H(T)⊗P∗(T)) (H(T)⊗P(T))

One thus has Aut(T)-equivariant cofibrations

(H(T)⊗P(T))− ↪→ (H(T)⊗P(T))+ ↪→ H(T)⊗P(T)

In other words, we have factorized the morphism (H(T) ⊗P(T))− ↪→
H(T) ⊗P(T). Now we push both maps out along the morphism of tα−T .
This will be a factorization of Diagram 4.7. Explicitly, we have the following
diagram

⊔
[T],T∈T(n,k(H ⊗P)−(T)⊗Aut(T) I[Sn] Wk−1(H, P)(n)

(H(T)⊗P(T))+ ⊗Aut(T) I[Sn] W+
k−1(H, P)(n)

⊔
[T],T∈T(n,k)(H(T)⊗P(T))⊗Aut(T) I[Sn] Wk(H, P)(n)

⊔
α−T

⊔
α+T

⊔
αT

(4.10)

We see that we have factorized the canonical morphism Wk−1(H, P)(n) ↪→
Wi(H, P)(n) as follows.

Wk−1(H, P) Wk(H, P)

W+
k−1(H, P)
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By the universal property of pushouts, any (k − 1)-homomorphism θk−1 :
Wk−1(H, P)→ Y can be uniquely extended to a map θ+k−1 : W+

k−1(H, P)→
Y which satisfies the conditions of a k-homomorphism with respect to the
maps α+

T . Thus we have the following commutative diagram

W+
k−1(H, P) Q

Wk(H, P) R

θ+k−1

χ

ω

(4.11)

Recall that χ is an acyclic fibration and therefore the dotted lift exists in the
above diagram. This is the desired k-homomorphism θk. �

Proof (Theorem 4.3.16) First we shall show that morphism g appearing in the
statement of the theorem is a weak equivalence. Let T be a tree with n input
edges. The map ε from Definition 4.3.1 induces a morphism

H(T)→ I.

The operad structure of P induces a morphism F : P(T) → P(n) as
follows. If T is IT then F(T) = 1 ∈P(1), and if T = tn then F is the identity
map. Otherwise if T = γ(tr, T′1, . . . , T′r) we have then F(T) is

F(T) = γ : P(r)⊗ T′1 ⊗ · · · ⊗ T′r →P(n).

These maps glue together to produce a map of operads W(H, P) → P . In
particular we observe that the composition

W0(H, P)
p−→W(H, P)

g−→P

is the identity. We earlier observed that the maps Wi(H, P) → Wi+1(H, P)
are acyclic cofibrations of collections and thus p is as well. Thus by the two
out of three axiom, g is a weak equivalence.

Secondly, we study f in Theorem 4.3.16. This map is the morphism P ↪→
H(T)⊗ (P) induced by 1 : I → H. We wish to show that this is a cofibra-
tion, a fact we are going to prove directly. Thus we must show that in any
commutative square of operads

F∗(P) Q

W(H, P) R

f χ

ω

where χ is an acyclic fibration, the dotted lift exists. By the universal prop-
erty of the free operad, an operad map F∗(P) → S is associated to a
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morphism of S-modules W0(H, P) = P → S . Therefore the above com-
mutative square corresponds to a commutative square of S-modules

W0(H, P) Q

W(H, P) R.

θ0

χ

ω

A dotted lift exists for the former square exists if and only a dotted lift exists
for the latter.

From Lemma 4.3.18 and induction we have that for all k > 0 we have a map
θk such that

Wk(H, P) Q

W(H, P) R.

θk

χ

ω

commutes and the restriction of θk to W0(H, P) is θ0. The map colimk→∞ θk
thus provides the desired dotted lift.

Finally, we observe that since P is S-cofibrant, by Lemma 4.2.8, F∗ is a
cofibrant operad. �

The last theoretical result of this chapter concerns the functoriality of the
W-construction.

Proposition 4.3.19 The construction W(H, P) is functorial in both H and P .

The details of the proof of Proposition 4.3.19 may be found in [5].

4.4 Examples

This section describes what the W-construction looks like in practice, with
a strong focus on the simplicial world. We start by discussing associahedra
(sometimes called Stasheff polytopes); an infinite sequence of topological poly-
topes. These were originally discovered by Dov Tamari in his unpublished
1951 PhD thesis [31] (but later independently rediscovered by Jim Stasheff
[30]), and significantly predate the study of model categories. Nonetheless
the arity n component of the Boardman-Vogt resolution of the associative
operad in topological spaces takes the form of a disjoint union of associa-
hedra. We shall informally describe the calculation of these associahedra
in low arities before stating some features of the general case. This section
is primarily for intuition, as we shall then move on to studying Boardman-
Vogt resolution of the associative operad in simplicial sets. Here, we shall
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do the low arity calculations by hand, before giving a complete combinato-
rial description. What we end up with is a simplicial set that can be realized
geometrically as an associahedron (though we do not prove this). Finally,
we shall treat the W-construction applied to the Barratt-Eccles operad.

4.4.1 Topological associahedra

Recall that in Top the unit is just the one point set ∗ and that the topological
associative operad is defined by

Assoc(n) :=
⊔
Sn

∗.

In other words, it is just a discrete collection of points equipped with the
free action of Sn. As we are working in topological spaces, it is immediately
apparent that this is S-cofibrant and well-pointed. In Top one can verify that
[0, 1], equipped with the maximum operation

max : [0, 1]⊗ [0, 1]→ [0, 1],

satisfies the axioms defining an interval. Thus W([0, 1], Assoc) will be a
cofibrant replacement for Assoc .

Assoc is a reduced operad so by Remark 4.3.14 we do not need to consider
trees with unary vertices. Also, Assoc(0) = ∅, so if T has a vertex with
no incoming edges Assoc = ∅, so we can ignore these trees as well. So
when n ≥ 2, the trees with n inputs that have the most internal edges are
the binary trees with n− 2 internal edges. Every other possible tree can be
obtained from these via contraction.

Explicitly when n = 1, 2, the largest tree with n inputs has no internal edges
so W([0, 1], Assoc)(1) is a point and W([0, 1], Assoc)(2) is a pair of points.
The symmetric group acts on these in the obvious way.

When n = 3, we have three trees to consider. Two of these are binary trees
and we also have t3. The two binary trees have 1 internal edge and thus
produce intervals. The tree t3 which produces a point which is identified
with 0 of both intervals. Thus it glues both intervals together. In fact, there
will be 6 such intervals and the action of the symmetric group is just to
permute them.

When n = 4 we have 5 binary trees with 2 internal vertices. These all
produce [0, 1]2. These connect along 5 trees with 1 internal vertices, which
means that these glue along a lines. Finally these glue along a single tree t4
with no internal vertices. The final result is pentagon. Of course, there are
4! = 24 such pentagons and the group S4 acts by permuting them.
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Figure 4.3: The small associahedra (image credit to [18])

In higher dimension W([0, 1], Assoc)(n) will consist of n! disjoint n− 2 di-
mensional polytopes. These will each have

Cn =
1

n + 1

(
2n
n

)
vertices, as this is the number of binary trees with n vertices. This polytope
is known as the nth associahedra Kn. Figure 4.3 displays Kn for n = 2, 3, 4, 5.

To describe the operad structure on W([0, 1], Assoc), select a point x within
the polytope Kn and one point xi each in the polytopes Kki for ki ∈ N

and 0 ≤ i ≤ n. Then x has coordinates (j1, . . . jn−2) the (n− 2)-cube H(T)
for some binary tree T and the xi will have coordinates (ji,1, . . . ji,ki−2) the
(n− 2)-cube H(Ti) for some binary tree Ti with ki leaves. Consider the tree
S = γT(T, T1, . . . , Tn). Then let y is the point

(j1, . . . jn−2, j1,1, . . . j1,ki−2, . . . jn,kn−2, 1, . . . , 1) ∈ H(S)

Here we have adopted the convention that the first n coordinates correspond
to the internal edges of S that come from T, the next k1 are those coming
from T1 and so on. The final n points come from the newly created n internal
edges of S which occur where the Ti have been grafted onto T. We have set
all of these values equal to 1. Finally we recall that H(S) has a canonical
embedding into Kk1+···+kn . We thus have that γ(x, x1, . . . , xn) is the image of
y under this embedding.

4.4.2 Simplicial associahedra

In the category of simplicial sets, 40 is the initial object and the monoidal
product is ×. Our first step shall be to show that 41 is an interval in Set4 .

Lemma 4.4.1 The standard 1-simplex is an interval in Set4 .

Proof There is a diagram of the form

40 t40 41 40.∼

77



4. The homotopy theory of operads

The weak equivalence is just the terminal morphism. The cofibration is
given by the pair (0, 1). The map 0 corresponds to the morphism given on
nondegenerate simplices by

{0} 7→ {0}

and the map 1 corresponds to

{0} 7→ {1}.

The morphism ∨ : 41 ×41 → 41 is the maximum operation (ie. the oper-
ation induced by the maximum operation on the set [1]). It is easy to check
that that diagrams appearing in definition 4.3.1 commute. �

Definition 4.4.2 The associative operad in simplicial sets is given in arity n by

Assoc(n) :=
⊔
Sn

40.

equipped with the free action of Sn.

The very low arity calculations are trivial.

Example 4.4.3 In arity 0,1 and 2, there are no trees to worry about other
than the trivial one, the corolla. It follows immediately that

W(41, Assoc)(n) = W0(41, Assoc)(n) =
⊔
Sn

40.

for n = 0, 1, 2.

Remark 4.4.4 One can easily check that

H(T)×Assoc(T)×Aut(T) I[Sn] ∼= H(T)×Assoc(n).

This immediately implies that

W(41, Assoc)(n) = Kn ×Assoc(n)

for some simplicial set Kn. In other words W(41, Assoc)(n) consists of n!
copies of the simplicial associahedron Kn. We have not yet seen any fully
worked out examples of the W-construction. Therefore in the next two exam-
ples, we shall ignore this ‘obvious’ simplification in the interests of gaining
fluency with the computations involved. We shall return to it in the proof
of Theorem 4.4.11.

Example 4.4.5 The first nontrivial case is n = 3. To begin with we have

W0(41, Assoc)(3) =
⊔
S3

40.
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Figure 4.4: The arity 3 trees with one internal edge

• •

Figure 4.5: The simplicial set W(41, Assoc)(3)

This comes equipped with a map

αt3 : (H(t3)×Assoc(t3))×Aut(t3) I[S3]→W0(41, Assoc)(3)

We observe that the domain and codomain of αt3 are Assoc(3) and we recall
from the previous section that αt3 is defined to be the identity on Assoc(3).
To compute W1(41, Assoc)(3) we must consider the trees with one internal
edge and three input edges. These are the two binary trees which are illus-
trated in figure 4.4. We shall first study the tree on the left, which we shall
denote T. Because there is only one internal edge, we have that H(T) = 41

and H(T)− = 40. The cofibration

H(T)− ↪→ H(T)

given by the map 0 : 40 → 41. There is a partial operad composition map

◦1 : Assoc(2)×Assoc(2)→ Assoc(3).

Combining these we obtain

α−T : (H(T)×Assoc(T))− ×Aut(T) I[Sn]→W0(41, Assoc)(3)

as id40 × ◦1. We also have a map

rT : (H(T)×Assoc(T))− ×Aut(T) I[Sn]→ (H(T)×Assoc(T))×Aut(T) I[Sn]

induced by the 0 map. We can repeat this analysis for the right tree S in
Figure 4.4. The only difference is that the partial composition operation
is now ◦2. To finish calculating W1(41, Assoc)(3) we now must calculate
the pushout appearing in Equation (4.7). The result is the simplicial set
appearing in Figure 4.5 tensored by

⊔
S3
40. The simplicial set in the figure

consists of three 0-simplices, one of which is associated with the 3-corolla.
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4. The homotopy theory of operads

Figure 4.6: The arity 4 trees with one internal edge

There are two nondegenerate 1-simplices, one associated to S and the other
to T. These have the property that if we apply d0 to either of them, the result
is the 0-simplex associated to t3. The result of tensoring by

⊔
S3
40 is that we

have 6 disjoint copies of this simplex, each labelled with an element of S3.

Recall that the pushout also gives us maps

αT : (H(T)×Assoc(T))×Aut(T) I[Sn]→W0(41, Assoc)(3).

One observe that (H(T)×Assoc(T))×Aut(T) I[Sn] is simply 6 copies of H(T)
indexed by S3. The map αT consists of mapping each copy of H(T) to 1-
simplex on the right via the identity map in the appropriate (meaning la-
belled with the same element of S3) copy of Figure 4.5. There are no larger
trees with three input vertices, and thus we conclude that W1(41, Assoc)(3)
is also W(41, Assoc)(3).

Example 4.4.6 Moving on to the n = 4 case, we have as before that

W0(41, Assoc)(4) =
⊔
S4

40.

This comes equipped with the identity map

αt4 : (H(t4)×Assoc(t4))×Aut(t4) I[S4]→W0(41, Assoc)(4).

There are five trees with four input vertices and one internal edge. These
are shown in Figure 4.6. We can repeat the analysis appearing in the case
n = 3 to build W1(41, Assoc)(4). This results in 4! copies of Figure 4.7, with
these copies indexed by S4.

Finally, as we can see from Figure 4.8, there are five trees with four input
edges and two internal edges. We shall study the tree T on the far left of
the figure. We have labelled its internal edges by a and b. We shall denote
the tree obtained by collapsing a by Ta (resp. b by Tb). We have that H(T) =
(41)a × (41)b where here (41)i means that this is the component of H(T)
associated to the internal edge x. H(Ta) ∼= Ha(T) = 41

b and H(Tb) ∼=
Hb(T) = 41

a embed into H(T) in the obvious way. Finally H(t4) = 40

embeds into H(T), H(Ta) and H(Tb) via

{0} 7→ {0}.
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•

• •

• •

Figure 4.7: W1(41, Assoc)(4)

a

b

Figure 4.8: The arity 4 trees with two internal edges

The morphism

idAssoc(2) × ◦1 : Assoc(2)×Assoc(2)×Assoc(2)→ Assoc(2)×Assoc(3)

is the map Assoc(T)→ Assoc(Ta) and ◦1× idAssoc(2) is the map Assoc(T)→
Assoc(Tb). These maps together describe the map

α−T : ((41
a t41

b)/40)×Assoc(4)→W1(41, Assoc)(4).

We also have the obvious embedding

rT : ((41
a t41

b)/40)×Assoc(4) ↪→ 41
a ×41

b ×Assoc(4).

Taking the pushout (as in Diagram 4.7), we obtain the part of W2(41, Assoc)(3)
corresponding to T, as illustrated in Figure 4.9.

Doing this for all the trees in Figure 4.8 we obtain the Figure 4.10. In the
diagram we have placed the label for each H(T) at the terminal vertex (see
Definition 4.4.10). There are no trees of arity 4 with more than two internal
edges, so we conclude that W(41, Assoc)(4) is 24 copies of Diagram 4.10,
each indexed with an element of S4.
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• •

•

Figure 4.9: Part of W2(41, Assoc)(3)

Figure 4.10: W(41, Assoc)(4)

Definition 4.4.7 A directed graph G is called transitively closed it satisfies the
condition that

(a, b), (b, c) ∈ E(G) =⇒ (a, c) ∈ E(G),

where E(G) is the edge set of the graph. In other words, if there is a directed
edge from vertices a to b and another from vertices b to c, then there is a edge
from a to c.

A transitively closed graph can be regarded as a category.

Definition 4.4.8 Let G be a transitively closed graph. We define a category
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G with objects given by the vertices of G and with

Hom(a, b) =


{id} if a = b.
∅ if a 6= b and (a, b) /∈ E(G).
{(a, b)} if a 6= b and (a, b) ∈ E(G).

The composite of the morphisms (a, b) and (b, c) is (a, c).

Before describing W(41, Assoc)(n), it will be necessary to understand the
combinatorial structure of (41)×n.

Lemma 4.4.9 Let I be a directed graph on 2n vertices, each labelled by a sequence
of length n with elements in {0, 1}, and such there exists an edge v(σ1,σ2,...,σn) to
v(τ1,τ2,...,τn) if and only if σi ≤ τi for all i. Then this graph is transitively closed and

(41)×n = N (I)

Proof Each 0-simplex of (41)×n is of the form σ1 × σ2 × · · · × σn where σi ∈
[1]. There is a 1-simplex ρ ∈ (41)×n such that d0(ρ) = σ1 × σ2 × · · · × σn
and d1(ρ) = τ1 × τ2 × · · · × τn if and only if σi ≤ τi for all i. For m ≥ 3 the
non-degenerate simplices of (41)×n are

((41)×n
m )nd = {s(q1)(θ1)× s(q2)(θ2)× · · · × s(qn)(θn) : m > qi ≥ 0 and

qi 6= qj when i 6= j}

where θi is the 1-simplex in the ith copy of 41 in the product, where s(k) =
sn−1sn−2 · · · ŝk · · · s0 and we use the notation x̂ to mean that we omit x. The
nondegenerate simplices of N (I)m will be the simplices of the form

(σ1,1 × · · · × σ1,n) ◦ · · · ◦ (σm,1 × · · · × σm,n)

where

• σi,j ∈ 41
1.

• for each i ∈ [1, m], there exists a unique p(i) ∈ [1, n] such that σi,p(i) =
id .

• fix j ∈ [1, n] and suppose that there exists q(j) ∈ [1, n] such that σq(j),j =
id . Then for all i > q(j), σi,j = s0(1) and for all i < q(j), σi,j = s0(0).

Then there is a function

f : N (I)ng
m → ((41)×n

m )ng

(σ1,1 × · · · × σ1,n) ◦ · · · ◦ (σm,1 × · · · × σm,n) 7→ s(p(1)−1)(id)× · · · × s(p(n)−1)(id)

One can check that this extends to an isomorphism of simplicial sets between
N (I) and (41)×n. �
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Definition 4.4.10 The terminal vertex of (41)×n is the vertex v(1,1,...,1).

Theorem 4.4.11 Let G be the directed graph on

3Pn−1(3)− Pn−2(3)
4n

vertices, where Pn is the nth Legendre polynomial and where each vertex vT is la-
belled by an n-ary non-unital tree. The edges of G are defined as follows; there is a
directed edge from vT to vS if and only there exists D ⊆ E(S) such that T = S/D.
Then this graph is transitively closed and

W(41, Assoc)(n) =
⊔
Sn

N (G)

where the action of Sn given by permutation of components of the disjoint union.

Remark 4.4.12 Recall that the Legendre polynomials Pn(x) are a system of
complete and orthogonal polynomials, indexed by the positive integers and
defined inductively by setting P1(x) = 1 and requiring that

∫ 1
−1 Pn(x)Pm(x)dx =

0 for all m < n. The sequence

an =
3Pn−1(3)− Pn−2(3)

4n

is known as the little Schroeder numbers (OEIS sequence A001003 [15]). In
particular an counts the number of non-unital n-ary trees, for a proof see
[28].

Proof First, we make the observation that H(T)×Assoc(T))×Aut(T) I[Sn] is
isomorphic to H(T)×⊔Sn

40. The simplicial set W(41, Assoc)(n) therefore
has the form ⊔

Sn

Kn (or Kn ×Assoc(n))

where Kn is a simplicial set that remains to be computed. We shall do this by
induction. Our inductive hypothesis shall be that Wi(41, Assoc)(n) admits
the following description.

Let Hi be a directed graph with vertices indexed by the set of trees with n input
edges and i or fewer internal edges, and such that there exists a directed edge from
vT to vS if and only there exists D ⊆ E(S) such that T = S/D. Then

Wi(41, Assoc)(n) =
⊔
Sn

N (Hi)

Moreover we assume, letting I be as in Lemma 4.4.9, that the map αT is N (βT)
where

βT : I → Hi
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is the map which sends the vertex in I indexed by the binary sequence (σ1, . . . σk)
to the vertex in Hi indexed by the tree T/F where F = {ei ∈ E(T) : σi = 0}.

Firstly, when i = 0, we have that W0(41, Assoc)(n) = Assoc(n). So our
hypothesis holds in the base case.

Secondly, recall that the following diagram, which is a specialization of 4.7,
is a pushout

⊔
[T],T∈T(n,k+1) H−(T)×Assoc(n) Wk(41, Assoc)(n)

⊔
[T],T∈T(n,k+1) H(T)×Assoc(n) Wk+1(41, Assoc)(n)

⊔
α−T

⊔
αT

Without loss of generality, we can ignore the symmetric action. This is now
exactly what we wish to show because for each T ∈ T(n, k + 1) we have

• The simplicial subset

αT (H(T)) ⊂Wk+1(41, Assoc)(n)

has exactly one vertex, the terminal one, which is not in Wk(41, Assoc)(n).
We define this to be the vertex vT.

• Let σ ∈ Wk+1(41, Assoc)(n) be a 1-simplex. Then d1(σ) = vT if and
only if d0(σ) ∈ αT (H(T)) , that is, if d0(σ) is indexed by a tree S such
that there exists D ∈ E(T) such that S = T/D.

• By Lemma 4.4.9, αT (H(T)) ∼= (41)×k+1 is equal to N (I). One can
show that the nerve functor preserves small coproducts in the category
of small categories. So

Wk+1(41, Assoc)(n) = N (Hk+1)

as desired.

Therefore, our inductive hypothesis holds for i = k + 1

Finally, as noted in Remark 4.3.14, the construction of W(41, Assoc)(n) re-
lies only on n-ary trees with no unitary vertices. Therefore our induction
terminates once we reach Wn−2(41, Assoc)(n). �

Remark 4.4.13 The operadic composition morphisms are exactly as in the
topological case in the previous subsection.

4.4.3 The homotopy Barratt-Eccles En-operad

This subsection is dedicated to giving a concrete description of the Boardman-
Vogt resolution of the Barratt-Eccles En-operad. The 0-simplices of the Barratt-
Eccles operad are the same as those of the associative operad, so some of our
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analysis in the last subsection carries over. The new feature is that we now
have non-degenerate simplices in dimension greater than 0. These behave in
a more complicated fashion. More precisely, as we saw above, each tree in
T with k internal vertices is associated to n! copies of the k-cube H(T) in the
associahedron, indexed by Sn. We are also to show that there is a subset KT
of Sn associated to T. Every i-simplex σ in Γ(k)(n) has i + 1 vertices, which
are elements of Sn. If all these vertices are in KT, then σ× H(T) is a simplex
in W(41, Γ(k))(n). Let us begin.

Definition 4.4.14 Let T be a tree with n input edges and k internal edges.
Let T′ be a tree given by collapsing one of its internal edges d. Then there is
a group homomorphism

fd : Aut(T)→ Aut(T′)

given by partial composition in the associative operad at the collapsed edge
d. Since Aut(tn) = Sn, iterating this procedure until we arrive at the n-
corolla induces a map

FT : Aut(T)→ Sn.

One can easily check that this map is independent of the order in which we
collapse the internal edges. The image of FT will be a subset of Sn which we
call the subset associated to T.

Example 4.4.15 Consider the left tree in Figure 4.4. We know that Aut(T) =
S2 × S2 and the map FT is given by the map ◦1 : S2 × S2 → S3. The subset of
S3 associated to T will be the permutations

{e, (1, 2), (1, 2, 3), (1, 3)}

Similarly the relevant map for the right tree in the figure would be ◦2. The
subset of S3 associated to this tree will be the permutations

{e, (1, 3), (1, 3, 2), (2, 3)}

We shall can now give our description of the Boardman-Vogt resolution of
the Barratt-Eccles En-operad W(41, Γ(n)).

Notation 4.4.16 Consider W(41, Assoc) as described in the previous sec-
tion. Recall that, for each T ∈ T(r) there is a map

αT : H(T)×Assoc(T))×Aut(T) I[Sr]→Wr(41, Assoc)(r) ↪→W(41, Assoc)(r)..

Further recall that H(T)×Assoc(T))×Aut(T) I[Sr] ∼= Sr. Under this identifi-
cation, for each σ ∈ Sr we define

H(T)σ := αT (H(T)× σ) ⊂W(41, Assoc)(r).
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Theorem 4.4.17 Let n > 0 be an integer. The Boardman-Vogt resolution of the
Barratt-Eccles En-operad W(41, Γ(n)) admits the following complete description.

• The simplicial set W(41, Γ(n)) has a simplicial subset isomorphic to W(41, Assoc).
This subset contains the entire 0-skeleton of W(41, Γ(n)).

• Let σ = (σ1, . . . , σk) ∈ Γ(n). Let T ∈ T such that σi ∈ KT, for 0 ≤ i ≤
k. Then Gσ

T = σ × H(T) is a simplicial subset of W(41, Γ(n)) such that
σi × H(T) = H(T)σi for 0 ≤ i ≤ k.

• Every simplex of Wi(41, Γ(n))(r) is in either W(41, Assoc) or one of the
Gσ

T.

Before we prove this result, we shall briefly illustrate what it means in prac-
tice.

Example 4.4.18 Consider the simplex σ = (e, (1, 2)) ∈ Γ(3)1. The permuta-
tions e and (1, 2) are in KT where T is the tree

The simplicial subset Gσ
T is therefore the red part of the following diagram.

• e •

• (1, 2) •

where the top line is the associahedron with index e and the second line is
the associahedron with index (1, 2).

Proof By Remark 4.3.14, the construction of W(41, Γ(n))(r) relies only on
r-ary trees with no unitary vertices. We shall use induction on the num-
ber i of internal edges of these trees. To be precise, we shall assume that
Wi(41, Γ(n))(r) admits the following description.

• The simplicial set Wi(41, Γ(n))(r) has a simplicial subset isomorphic to
Wi(41, Assoc)(r). This subset contains the entire 0-skeleton of Wi(41, Γ(n))(r).

• Let σ = (σ1, . . . , σk) ∈ Γ(n). Let T ∈ T(r, i) such that σj ∈ KT, for
0 ≤ j ≤ k. Then Gσ

T = H(T)× σ is a simplicial subset of W(41, Γ(n))
such that H(T)× σj = H(T)σj for 0 ≤ j ≤ k. Moreover, the map αT is

induced by the identity map H(T)× σ→ Gσ
T for all σ ∈ Γ(n)(T).
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• Every simplex of W(41, Γ(n)) is in either W(41, Assoc) or one of the
Gσ

T.

First observe that
W0(41, Γ)(r) := Γ(r).

Since Ktr = Sr, our hypothesis is true when i = 0. Next, suppose that it is
true when i = k. Then

⊔
[T],T∈T(r,k+1)(H × Γ(n))−(T)×Aut(T) I[Sr] Wk(41, Γ(n))(r)

⊔
[T],T∈T(r,k+1)(H(T)× Γ(n)(T))×Aut(T) I[Sr] Wk+1(41, Γ(n))(r)

⊔
α−T

⊔
αT

Let σ = (σ0, . . . , σk) ∈ Γ(n). Then one can easily show that σ ∈ Γ(n)(T)
if and only if σi ∈ KT for 0 ≤ i ≤ k. Therefore

⊔
[T],T∈T(r,k+1)(H(T) ×

Γ(n)(T))×Aut(T) I[Sr] is the union of two kinds of simplicial sets.

• We have a (k− 1)-cube H(T)× (σ0) for each tree T ∈ T(n, k + 1) and
each 0-simplex σ0 ∈ Γ(n).

• We have a simplicial set H(T) × σ for each σ ∈ Γ(n) such that the
vertices of σ lie in KT.

By our inductive hypothesis, the simplicial subset ⊔
[T],T∈T(r,k+1)

αT

( ⋃
σ0∈Sr

H(T)× (σ0)

)
⊆Wk+1(41, Γ(n))(r)

will be isomorphic to Wk+1(41, Assoc)(r). The second type of simplicial
subset are exactly the subsets of type 2. �
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Chapter 5

Simplicial coalgebras

The purpose of this chapter is to generalise Theorem 2.4.10, which says that
n-fold suspensions are coalgebras over the little n-discs operad, to simpli-
cial sets. There are numerous reasons why this is a useful idea. Our initial
motivation was to find a strictly coassociative topological coalgebra, to pro-
vide the Eckmann-Hilton dual of the Moore loop space. Unfortunately, for
unclear reasons, we have failed to find any such model in either topologi-
cal spaces or simplicial sets. Another possible motivation therefore is that
passing through simplicial sets is a necessary step on the journey to describ-
ing En-coalgebras in the category of ∞-operads. Among other things, this
may permit a dualization of Lurie’s proof of May’s recognition principle [21,
Theorem 5.2.6.15].

Our discussion shall proceed as follows. In the first section, we shall shall de-
fine the ‘correct’ notion of a coendomorphism operad in topological spaces.
In the second section we will show that simplicial n-fold suspensions are
homotopy algebras over the Barratt-Eccles operad, the main result of this
thesis.

5.1 The simplicial coendomorphism operad

In this chapter, we wish to extend the notion of coalgebras to the realm
of simplicial sets. As Moreno-Fernández and Wierstra did in topological
spaces (see Chapter 1), we are going to do this by defining the notion of a
coendomorphism operad. This is significantly more difficult than it appears.
We cannot simply take the obvious choice, the operad defined in arity n by

MapSet4
(X, X∨n).

To see why, consider what happens in the case where X = S1. This simplicial
set has only 1 nondegenerate simplex other than the base point - the 1-
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simplex σ. The vertices of the simplicial set

MapSet4
(S1, (S1)∨n)

are distinctly non-interesting, because the σ can only mapped to one copy
of S1 in the wedge product. This is in total contrast with the interesting
structure in topological spaces, and hence in the homotopy category.

This hints at the underlying problem. As we have seen throughout this re-
port, not all simplicial sets are fibrant in the Kan-Quillen model structure.
Thus, not all maps in the homotopy category exist between all pairs of ob-
jects in the model. To ensure that they do we must take a fibrant replacement
of X∨n. (We shall later see that MapSet4

(X, X∨n) is not even the correct ho-
motopy type to be a good candidate for a coendomorphism operad.) To
ensure things remain as combinatorially tractable as possible, we shall use
Kan’s Ex∞ functor for this task (we could alternatively use S•|X|, and we
shall actually use this approach in the proof of Theorem 5.2.1). The underly-
ing S-module of the desired operad is very easy to describe and we can do
this immediately.

Definition 5.1.1 We define the simplicial coendomorphism S-module in arity r
to be

CoEnd(X)(r) := MapSet4
(X, Ex∞(X∨r)).

Each σ ∈ Sr induces a map σ∗ : X∨r → X∨r, by via permutation of the factors
of the wedge product. Then the symmetric action of the S-module is given
by the maps

− ∗ σ : CoEnd(X)(r)→ CoEnd(X)(r)

f 7→ σ∗ ◦ f .

Remark 5.1.2 It is obvious that − ∗ σ is a bona fide simplicial map because
the degeneracy and face maps of the simplicial mapping space act only
on the domain of a n-simplex f : X × 4m → Ex∞(X∨r) and not on the
codomain.

The next few pages consist of defining the operadic composition maps. We
start by recalling some notation.

Observation 5.1.3 Recall from Chapter 1 that Ex∞(X) is defined the colimit
of the following chain of acyclic cofibrations

X ∼−→ Ex(X)
∼−→ Ex2(X)

∼−→ · · · ∼−→ Exi(X)
∼−→ · · ·

Since cofibrations are injective in the Kan-Quillen model structure, this means
that for all x ∈ Ex∞(X) there exists an N > 0 such that x ∈ Exn(X) for all
n > N. Of course, we are implicitly identifying each Exn(X) with its image
in Ex∞(X), where they form an exhaustive filtration.
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Definition 5.1.4 Let X be a simplicial set with only finitely many non-degenerate
simplices, and let f be an n-simplex of CoEnd(X)(r). In other words,

f ∈ MapSet4
(X, Ex∞(X∨r))n.

By the definition of simplicial mapping sets (see Definition 3.1.12), f is a
simplicial function X ×4m → Ex∞(X∨r). Following Observation 5.1.3, we
can associate an integer Nσ to every simplex σ ∈ X ×4m ; this being the
smallest N such that f (σ) ∈ ExN(X∨r). We define N f to be the integer
max{Nσ}σ∈X×4m .

Remark 5.1.5 The integer N f is well-defined because X ×4m, the domain
of f , has only finitely many non-degenerate simplices.

Remark 5.1.6 It is easy to scheck the following three properties of N f .

• f factors through ExN f (X∨r).

• N f is the smallest integer with this property.

• For all N ≥ N f , f factors through ExN(X∨r).

Our definition of the coendomorphism operad will make heavy use of the
adjunction between Ex and sd. For ease of reading, we shall introduce two
pieces of helpful notation.

Notation 5.1.7 Let f ∈ HomSet4(sdN(X ×4m), (X∨r)) for N > 0. This is
adjoint to f c ∈ HomSet4((X ×4m), Exm(X∨r)). Now f c uniquely extends
to an element of HomSet4((X ×4m), Ex∞(X∨r)) which is the same thing as
MapSet4

(X, Ex∞(X∨r))n. We shall denote this element as f .

Notation 5.1.8 Let f ∈ MapSet4
(X, Ex∞(X∨r))m. Then it follows from Re-

mark 5.1.5 that for all N ≥ N f , there is a unique element, which we shall
denote ( f , N), of HomSet4(sdN(X×4m), X∨r), such that ( f , N) = f .

Having dispensed with the preliminaries we are now in a position to define
the composition maps. Observe that the subdivision functor is a left adjoint
and so preserves colimits. In particular, it commutes with wedge products.

Definition 5.1.9 Let f ∈ CoEnd(X)(r)m and fi ∈ CoEnd(X)(ni)m for 1 ≤
i ≤ r. We define the composition map

γ : CoEnd(X)(r)×CoEnd(X)(n1)× · · ·CoEnd(X)(nr)→
CoEnd(X)(n1 + · · ·+ nr)
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to be F where F is the map

F : sdN+N f (X×4m)
sdN(δ4m )
−−−−−→ sdN(sdN f (X×4m)× sdN f (X×4m))

sdN(id× sdNf (π2))−−−−−−−−−−→ sdN(sdN f (X×4m)× sdN f (4m))
a−→ sdN(sdN f (X×4m)×4m)

( f ,N f )−−−→ sdN(X∨r×4m))
b−→ sdN(X×4m)∨r ( f1,N)∨···∨( fr ,N)−−−−−−−−−→ X∨n1+···nr

where

• N is the integer max(N f1 , . . . , N fn).

• δ
sdNf (X×4m)

: sdN f (X ×4m) → sdN f (X ×4m)× sdN f (X ×4m) is the
diagonal map.

• π2 : X×4m → 4m is the projection.

• a : sdN f (4m))→ sdN(sdN f (X×4m)×4m) is the map sdN(id×ν
(N f )

4m )

where ν
(N f )

4m := ν4m ◦ · · · ◦ ν
sdNf −14m and νZ : sd Z → Z is the last vertex

map.

• b is an isomorphism, as × is distributive over the wedge product, and
the wedge product commutes with subdivision.

We need to check that the definition above gives rise to well-defined operad.
We phrase this result as a theorem.

Theorem 5.1.10 Let X be a simplicial set with finitely many non-degenerate sim-
plices. Then the composition maps of Definition 5.1.9 induce an operad structure
on the S-module CoEnd(X).

Before proving this theorem, we wish to make two useful remarks and intro-
duce a final piece of notation.

Remark 5.1.11 Our first remark concerns the relationship between ( f , N)
and ( f , M) for M > N ≥ N f . From the definition of Ex we see that, for all
simplicial sets Z and Z′, the simplicial morphism HomSet4(νZ, Z′) is adjoint
to HomSet4(Z, µZ′), where both

µZ : Z → Ex(Z).

νZ : sd Z → Z.

are the maps induced by the last vertex map. Thus we have the relation

( f , N) ◦ νsdN(X×4m) = ( f , N + 1).
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for all N ≥ N f and its obvious extension by induction. A second useful
well-known result about νZ that you should keep in the back of your mind
is that the following diagram commutes

sd Z Z

sd Z′ Z′.

sd f

νZ

f

νZ′

(5.1)

Notation 5.1.12 We define ν
(k)
Z := νZ ◦ · · · ◦ νsdk−1 Z.

Remark 5.1.13 Another useful thing is to note that we can replace N f in the
definition of F with any integer K ≥ N f , and F will not change. To see why,
call this new map F(K), and then observe, with the help of Diagram 5.1, that

F(K) = F ◦ ν
(K−N f )

sdNf (X×4m)
. By our previous remark

F ◦ ν
(K−N f )

sdNf (X×4m)
= F.

Similarly, if we replace N in the definition with a larger integer K′, the
function F in Definition 5.1.9 will become another function which we will
call F(K′). It once again follows from Remark 5.1.11 and Diagram 5.1 that
this function will be related to F by the identity

f (K′) = F ◦ ν
(K′−N)
Z ,

and so we can also replace N with any larger integer in Definition 5.1.9
without changing the operad structure.

Proof (Theorem 5.1.10) We need to verify that this defines an operad, starting
with the associativity axiom. So we wish to show that

γ(γ( f , f1, . . . , fr), f1,1, . . . , fr,nr) = γ( f , γ( f1, f1,1, . . . f1,n1), . . . ,
γ( f1, fr,1, . . . fr,nr))

for all f ∈ CoEnd(X)(r)m, fi ∈ CoEnd(X)(ni)m and fi,j ∈ CoEnd(X)(ni,j)m.
Expanding the left hand side of this we obtain

(
r∨

i=1

ri∨
j=1

( fij, M)) ◦ (
r∨

k=1

sdM(( fk, M′)× ν
(M′)
4m ◦ sdM′(π2))) (5.2)

◦ sdM+M′(( f , N f )× (ν
(N f )

4m ◦ sdN f (π2))) (5.3)

where M = max{N fij}1≥i≥r,1≤j≤ri and M′ = max{N fi}1≤i≤r. Now let Mi =

max{Mij}0≤j≤ri and recall that

( f , M) = ( f , Mi) ◦ ν
(M−Mi)

sdM(X×4m)
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We may deduce from this that Expression (5.3) can be written

(
r∨

i=1

ri∨
j=1

( fij, Mi) ◦ ν
(M−Mi)

sdMi (X×4m)
) ◦ (

r∨
k=1

sdM(( fk, M′)× ν
(M′)
4m ◦ sdM′(π2)))

◦ sdM+M′(( f , N f )× (ν
(N f )

4m ◦ sdN f (π2))).

This can be written

(
r∨

i=1

ri∨
j=1

( fij, Mi)) ◦ (
r∨

k=1

ν
(M−Mk)

sdM(X∨rk×4m)
◦ sdM(( fk, M′)× ν

(M′)
4m ◦ sdM′(π2)))

◦ sdM+M′(( f , N f )× (ν
(N f )

4m ◦ sdN f (π2))).

Using the commutativity of Diagram 5.1 we see that this is equal to

(
r∨

i=1

ri∨
j=1

( fij, Mi)) ◦ (
r∨

k=1

sdMk(( fk, M′)× ν
(M′)
4m ◦ sdM′(π2)) ◦ νM−Mk

sdM′+Mk (X×4m)
)

◦ sdM+M′(( f , N f )× (ν
(N f )

4m ◦ sdN f (π2))).

Once again using Diagram 5.1, we can rewrite this as

(
r∨

i=1

(
ri∨

j=1

( fij, Mi)) ◦ sdMi(( fi, M fi)× (ν
(M fi

)

4m ◦ sdM fi (π2))) ◦ ν
M+M′−Mi−M fi

sdM′+Mi (X×4m)
)

◦ sdM+M′(( f , N f )× (ν
(N f )

4m ◦ sdN f (π2))).

The above expression is equal to

r∨
i=1

(γ( fi, fi1, . . . , firi)), M+ M′) ◦ sdM+M′(( f , N f )× (ν
(N f )

sdM+M′ (4m)
◦ sdN f (π2))).

By our argument on the last page, this is equal to

γ( f , γ( f1, f1,1, . . . f1,n1) . . . , γ( f1, fr,1, . . . fr,nr))

as desired.

The identity element of the operad is

µX : X → Ex∞(X).

Verifying the equivariance axioms is straightforward, it is almost exactly the
same as verifying them for topological coendomorphism operad. Therefore
we have defined an operad. �
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5.2. Simplicial suspensions are En-coalgebras

It remains only to define simplicial coalgebras, which proceeds exactly as
one would expect.

Definition 5.1.14 Let P be an operad in simplicial sets. We shall say that a
finite simplicial set X is a P-coalgebra if there exists an operadic morphism
Φ : P → CoEnd(X).

Lastly we define En-algebras in Set4 .

Definition 5.1.15 In simplicial sets, an En-(co)algebra is a homotopy (co)algebra
over the Barratt-Eccles En-operad.

5.2 Simplicial suspensions are En-coalgebras

In this section, in direct analogy with Moreno-Fernández and Wierstra’s re-
sult in topological spaces, we aim to show that simplicial suspensions are
homotopy coalgebras over the Barratt-Eccles operad. The strategy of this
proof is as follows. First we transfer the little n-discs operad Dn, the topo-
logical coendomorphism operad and the operad morphism between them
Φ into the category of simplicial sets using the simplicial chains functor S•.
We then use the homotopy transfer principle to lift this to a morphism from
a cofibrant replacement of Dn to the simplicial coendomorphism operad.

The precise statement of the simplicial version of Theorem 2.4.10 is as fol-
lows.

Theorem 5.2.1 Let n ∈N and ΣnX be the n–fold suspension of a finite simplicial
set X. Then ΣnX has the structure of an En-coalgebra.

Our proof of this theorem requires that the Cartesian product commutes
with the geometric realization functor. This is actually not true in gen-
eral. Therefore, we shall need to restrict from the category of all topological
spaces to the category of compactly generated Hausdorff spaces.

Definition 5.2.2 Let (Top′,×Ke) be the full subcategory of Top whose ob-
jects are the compactly generated Hausdorff spaces. This is equipped with
the Kelley product defined by

X×Ke Y = (X×Y)c

where (X × Y)c is the set X × Y equipped with the following topology; a
subset A ⊆ (X × Y)c is closed if and only if for all compact subsets K of
the topological space X × Y, the set A ∩ K is closed in the topological space
X×Y.

Remark 5.2.3 The Kelley product is the same as the ordinary product if
at least one of the factors is locally compact. Carefully examining Example
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2.4.9 and the proof of Theorem 2.4.10, we see that there is therefore no reason
why we cannot take the category we working over to be Top′, with all other
definitions remaining unchanged.

Remark 5.2.4 The key reason why we use the Kelly product here is that, if
X and Y are simplicial sets,

|X| ×Ke |Y| = |X×Y|
something that is not true for the ordinary Cartesian product in topological
spaces.

We also wish to be able to transfer operads from topological space to simpli-
cial sets. This is made possible by the following definition.

Definition 5.2.5 Let P be an operad in Top or in Top′. We define an operad
S•P over Set4 with arity n component

(S•P)(n) := S•(P(n))
where S• is the singular chains functor. The action of σ ∈ Sn on S•P(n)
is given by S•P(n) ∗ σ := S•(P(n) ∗ σ). The operadic composition map is
γS•P := S•(γP ) and we take the unit to be the simplex [40 → 1Top′ ] ∈
S•P(1).

Remark 5.2.6 The operad composition map in the definition above is well-
defined because S• is right adjoint to the geometric realization. This means
that it preserves limits, and in particular, products.

We can actually define S•(CoEndTop′(|X|)) to be an alternative coendomor-
phism operad. The following theorem gives us a precise description of it.

Lemma 5.2.7 Let X be a simplicial set with only finitely many nondegenerate
simplices. The operad S•(CoEndTop′(|X|)) is isomorphic to the simplicial operad
Q(X) with arity r component equal to

Q(X)(r) := MapSet4
(X, S•|X∨r|).

Let f ∈ Q(X)(r)m and let fi ∈ Q(X)(ni)m for 1 ≤ i ≤ r. The operadic composi-
tion map

γ : Q(X)(r)×Q(X)(n1)× · · · ×Q(X)(nr)→ Q(X)(n1 + · · ·+ nr)

is given by the adjoint under the Top-Set4 adjunction of F : |X × 4m| →
|X∨n1+···+nr |, where F is defined by

|X×4m|
| id×δ4m |
−−−−−→ |X×4m ×4m| a−→ |X×4m| ×Ke |4m| | f |×Keid−−−−→

|S•|X∨r|| ×Ke |4m|
εX∨r×Keid
−−−−−→ |X∨r| ×Ke |4m| b−→ |X×4m|∨r

∨r
i=1 | fi |−−−−→

r∨
i=1

|S•|X∨ni ||
∨r

i=1 εX∨ni−−−−−→
r∨

i=1

|X∨ni | c−→ |X∨n1+···+nr |

96



5.2. Simplicial suspensions are En-coalgebras

where

• δ4m : 4m → 4m ×4m is the diagonal map.

• for Y a topological space, the map εY : |S•(Y)| → Y is the counit of the
adjunction between topological spaces and simplicial sets.

• a : |X ×4m ×4m| → |X ×4m| ×Ke |4m| is an isomorphism, as × com-
mutes with geometric realisation.

• b : |X∨r| ×Ke |4m| → |X ×4m|∨r is an isomorphism, as both × and the
wedge product commute with geometric realisation.

• c :
∨r

i=1 |X∨ni | → |X∨n1+···+nr | is an isomorphism, as the wedge product
commutes with geometric realisation.

For each σ ∈ Sr, there is a map σ∗ : X∨ → X∨ given by permuting the terms
of the wedge sum by σ. The symmetric structure on Q(X)(r) is defined by post-
composition with the morphism S•|σ∗|.

Proof We can write

S•(CoEndTop′(|X|))(r) = S•MapTop′(|X|, |X
∨r|) ∼= MapSet4

(X, S•|X∨k|).

because, for all K ∈ Set4 and Y ∈ Top′, we have

HomTop′(|4m|, MapTop′(|K|, Y)) ∼= HomTop′(|4m| ×Ke |K|, Y)

by tensor-hom adjunction. Here it is critical to distinguish between the sim-
plicial mapping space and the hom-set. We then have

HomTop′(|4m| ×Ke |K|, Y) ∼= HomTop′(|4m × K|, Y)

by the identity |X| ×Ke |Y| ∼= |X×Y| and finally we have

HomTop′(|4m × K|, Y) ∼= HomSet4(4
m × K, S•Y)

by adjunction.

Secondly, it remains to check that operad morphisms are as described in the
statement of the lemma. We can describe the induced operad structure on
HomTop′(|4m × X|, |X∨r|) quite easily. For f ∈ HomTop′(|4m × X|, |X∨r|)

and fi ∈ HomTop′(|4m × X|, |X∨ni |) the composite γ( f , f1, . . . fn) is the func-
tion

F : |X×4m|
| id×δ4m |
−−−−−→ |X×4m ×4m| a−→ |X×4m| ×Ke |4m| f×Keid−−−→

|X∨r| ×Ke |4m| b−→ |X×4m|∨r
∨r

i=1 fi−−−→
r∨

i=1

|X∨ni | c−→ |X∨n1+···+nr |
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The isomorphism

G : HomSet4(4
m × X, S•|X∨r|) ∼−→ HomTop′(|4m × X|, |X∨r|)

can be written by
f 7→ εX∨r ◦ | f |.

Therefore the composition map is exactly as described. �

Remark 5.2.8 It is important to remark that this operad will usually have
a different homotopy type to the naı̈ve simplicial coendomorphism operad
mentioned at the start of this chapter.

Despite Remark 5.2.8, the simplicial coendomorphism operad and the op-
erad S•(CoEndTop′(|X|)) will be equivalent.

Lemma 5.2.9 Let X be a finite simplicial set. Then the simplicial coendomorphism
operad and the operad S•(CoEndTop′(|X|)) are weakly equivalent.

We shall prove this by constructing a zig-zig involving a third operad, which
we define will first.

Definition 5.2.10 Let X be a finite simplicial set. Then the mixed coendomor-
phism operad R(X) has arity r component

R(X)(r) = MapSet4
(X, Ex∞(S•|X∨r|)).

For each σ ∈ Sr, there is a map σ∗ : X∨ → X∨ given by permuting the terms
of the wedge sum by σ. The symmetric structure on R(X)(r) is defined
by post-composition with the morphism Ex∞(S•|σ∗|). We shall define the
operadic composition map using both the sd–Ex and the simplicial chains-
geometric realization adjunctions consecutively. Let f ∈ Q(X)(r)m and fi ∈
Q(X)(ni)m for 1 ≤ i ≤ r, then the operadic composition map

γ : R(X)(r)× R(X)(n1)× · · · × R(X)(nr)→ R(X)(n1 + · · ·+ nr)

is defined to be F which is adjoint, under the sd-Ex adjunction, of the
morphism, F : sdN f (X ×4m) → S•|X∨n1+···+nr |. F is itself an adjoint, this
time under the geometric realization –simplicial chains adjunction, of a mor-
phism G : | sdN+N f (X ×4m)| → |X∨n1+···+nr | which we define to be the
composite

| sdN+N f (X×4m)|
| sdN(δ4m )|
−−−−−−→ | sdN(sdN f (X×4m)× sdN f (X×4m))|

| sdN(id× sdNf (π2))|−−−−−−−−−−−→ | sdN(sdN f (X×4m)× sdN f (4m))| a−→ | sdN(sdN f (X×4m)×4m)|
sdN(( f ,N f )×id)
−−−−−−−−→ | sdN(S•|X∨r| ×4m)| b−→ |S•|X∨r| ×4m| c−→ |X∨r ×4m|

d−→ | sdN(X∨r×4m)| e−→ | sdN(X∨r×4m)|∨r
∨r

i=1 | fi |−−−−→
r∨

i=1

|S•|X∨ni ||
∨r

i=1 εX∨ni−−−−−→
r∨

i=1

|X∨ni |

where
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• N is the integer max(N f1 , . . . , N fn).

• and for Y a topological space, the map εY : |S•(X∨r)| → Y is the counit
of the adjunction between topological spaces and simplicial sets.

• δ
sdNf (X×4m)

: sdN f (X ×4m) → sdN f (X ×4m)× sdN f (X ×4m) is the
diagonal map.

• π2 : X×4m → 4m is the projection.

• a : | sdN(sdN f (X ×4m)× sdN f (4m))| → | sdN(sdN f (X ×4m)×4m)|
is the map | sdN(id×ν4m ◦ · · · ◦ ν

sdNf −14m)|.

• b : | sdN(S•|X∨r| × 4m)| → |S•|X∨r| × 4m| is a homeomorphism,
by Lemma 3.4.2, which states that there is a homeomorphism hZ :
| sd(Z)| → |Z| for every simplicial set Z (although this homeomor-
phism is not necessarily natural for simplicial morphisms Z → Z′).

• c : |S•|X∨r| ×4m| c−→ |X∨r ×4m| is the composite

|S•|X∨r| ×4m| p−→ |S•|X∨r|| ×Ke |4m|
|εX∨r |×Keid
−−−−−−→ |X∨r| ×Ke |4m|

q−→ |X∨r ×4m|

where p and q are isomorphisms as the Kelley product commutes with
geometric realisation.

• d : |X∨r ×4m| → | sdN(X∨r ×4m)| is the homeomorphism that exists
by Lemma 3.4.2.

• e : | sdN(X∨r ×4m)| → | sdN(X∨r ×4m)|∨r is a homeomorphism be-
cause wedge product commutes with geometric realization.

• f :
∨r

i=1 |X∨ni | → |X∨n1+···+nr | is a homeomorphism, as the wedge
product commutes with geometric realisation.

We now start the proof of Lemma 5.2.9.

Proof (Lemma 5.2.9) Since, by Lemma 5.2.7, the operad S•(CoEndTop′(|X|))
is isomorphic to Q(X)(r), it suffices to construct a zig-zag of weak equiva-
lences

CoEnd(X)
p−→ R(X)

q←− Q(X).

We define p(r) to be the morphism

MapSet4
(X, Ex∞(υX∨r)) : MapSet4

(X, Ex∞(X∨r))→ MapSet4
(X, Ex∞(S•|X∨r|))

where υX∨r : X∨r → S•|X∨r| is the unit of the singular chains – geometric
realization adjunction. Observe that Ex∞(υX∨r) : Ex∞(X∨r) → Ex∞(S•|X∨r|)
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is a weak equivalence between fibrant simplicial sets. Hence it is a homo-
topy equivalence, and the functor MapSet4

(X,−) preserves homotopy equiv-
alences. Hence p is a weak equivalence.

It remains to check that it induces a morphism of operads. We check
this directly. Note first that MapSet4

(X, Ex∞(υX∨r))( f ) = Ex∞(υX∨r) ◦ f .
Then observe that NEx∞(υX∨r )◦ f = N f and max(NυX∨r )◦ f1

, . . . , NυX∨r )◦ fn) =
max(N f1 , . . . , N fn). Then observe that the morphism

| sdN(sdN f (X×4m)×4m)|
sdN((Ex∞(υX∨r )◦ f ,N f )×id)
−−−−−−−−−−−−−−−→ | sdN(S•|X∨r| ×4m)|

factors as

| sdN(sdN f (X×4m)×4m)|
sdN(( f ,N f )×id)
−−−−−−−−→ | sdN(X∨r ×4m)|

sdN(υX∨r×id)
−−−−−−−→ | sdN(S•|X∨r| ×4m)|

Moreover, having first observed that the following diagram is commutative

| sdN(X∨r ×4m)| | sdN(S•|X∨r| ×4m)|

|(X∨r ×4m)| |(S•|X∨r| ×4m)|,

h(X∨r×4m)

| sdN(υX∨r×id)|

hS•|X∨r |×4m

|(υX∨r×id)|

where hZ : | sd Z| → |Z| is the map that exists by Lemma 3.4.2, we see that
the composite

| sdN(X∨r ×4m)|
| sdN(υX∨r×id)
−−−−−−−−→ | sdN(S•|X∨r| ×4m)| b−→ |S•|X∨r| ×4m|

c−→ |S•|X∨r||×Ke |4m|
|εX∨r |×Keid
−−−−−−→ |X∨r|×Ke |4m| d−→ |X∨r×4m| e−→ | sdN(X×4m)|∨r

is an isomorphism by the triangle identities for the S•–| − | adjunction. Explic-
itly, the (left) triangle identity for an adjunction L a R with unit η : idX →
R ◦ L and counit ε : L ◦ R → idY states that the natural transformation of
functors defined as the composite

L
Lη→ LRL εL→ L

is the identity transformation. Upon further observing that, for the same
reason, the composite

| sdN(X × 4m)|∨r
∨r

i=1 |Ex∞(υX∨r )◦ fi |−−−−−−−−−−→
r∨

i=1

|S•|X∨ni ||
∨r

i=1 εX∨ni−−−−−→
r∨

i=1

|X∨ni |
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is exactly the map

| sdN(X×4m)|∨r
∨r

i=1 | fi |−−−−→
r∨

i=1

|X∨ni |,

it becomes obvious that γ commutes with p, and so p is a weak equivalence
of operads.

Similarly, we define q(r) to be the morphism

MapSet4
(X, µS•|X∨r |) : MapSet4

(X, S•|X∨r|)→ MapSet4
(X, Ex∞(S•|X∨r|)).

This is a weak equivalence of simplicial sets for exactly the same reasons
that p(r) is. Observe that Nq(r)( f ) = 0 for all f ∈ Q(X)(r). It follows from
the form of the operad maps that the morphism q identifies Q(X) with a
suboperad of R(X)(r). In particular, q is a morphism of operads, and so a
weak equivalence of operads. �

Finally, we can prove the main result of this section.

Proof (Theorem 5.2.1) Let ΣnX be the n–fold suspension of a simplicial set
X. As |ΣX| is CW-complex, it is in Top′. Suspensions are a particular
kind of finite limits, and the geometric realization functor commutes with
finite limits, so suspensions commute with geometric realization (alterna-
tively, see [10]) and thus that |ΣnX| is a coalgebra over the little n–discs
operad in Top′. This coalgebra structure is an an operadic morphism Φ :
Dn → CoEndTop′(|ΣnX|). As discussed above, we can use S• to transfer
these operads and this algebra structure to the category of simplicial sets,
producing the following morphism of operads

S•(Φ) : S•(Dn)→ S•(CoEndTop′(|ΣnX|))

Lemma 5.2.9 tells us that there is a weak equivalence between CoEnd(X)
and S•(CoEndTop′(|ΣnX|)). Observe that in each arity CoEnd(X)(n) is a
mapping space where the target is a Kan complex, hence Kan itself and a
fibrant operad in the operadic model structure. By its construction, in each
arity S• CoEndTop′(|ΣnX|) is a singular complex and thus as an operad it is
also fibrant.

Since we have a weak equivalence between fibrant operads, over the cofi-
brant replacement (S•Dn)∞ of S•Dn we have an induced bijection between
the homotopy classes of morphisms of operads

[(S•Dn)∞, CoEndSet4(Σ
nX)] ∼= [(S•Dn)∞, S• CoEndTop′(|ΣnX|)].

So we can choose a morphism ϕ : (S•Dn)∞ → CoEndSet4(Σ
nX), such that ϕ

is homotopy equivalent to S•Φ.
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5. Simplicial coalgebras

Finally to prove that n-fold suspensions are En-algebras it suffices to note
that all topological operads are fibrant and so the weak equivalence between
the little n-discs operad and the geometric realization of the Barratt-Eccles
En-operad remains one when taking the S• functor. The Barratt-Eccles En-
operad Γ(n) is weakly equivalent to S•|Γ(n)|, and in particular, (S•Dn)∞ can
be taken to be the Boardman-Vogt resolution of Γ(n); the operad W(41, Γ(n))
that we computed earlier. �
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