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Abstract

This is the second in a sequence of three articles exploring the relationship between commuta-
tive algebras and E∞-algebras in characteristic p and mixed characteristic. Given a topological
space X , we construct, in a manner analogous to Sullivan’s APL-functor, a strictly commutative
algebra over Ẑp which we call the de Rham forms on X . We show this complex computes the
singular cohomology ring of X . We prove that it is quasi-isomorphic as an E∞-algebra to the
Berthelot-Ogus-Deligne décalage of the singular cochains complex with respect to the p-adic
filtration. We show that one can extract concrete invariants from our model, including Massey
products which live in the torsion part of the cohomology. We show that if X is formal then, except
at possibly finitely many primes, the p-adic de Rham forms on X are also formal. We conclude
by showing that the p-adic de Rham forms provide, in a certain sense, the "best functorial strictly
commutative approximation" to the singular cochains complex.

1 Introduction

Since its introduction by Quillen [20] and Sullivan [21], rational homotopy theory has probably
become the single most successful subfield of algebraic topology. One of the main observations
of [21], which was completely fleshed out by [6], was that it was possible to completely capture
the rational homotopy theory of spaces via a strictly commutative model APL (X ), which behaves
roughly like the de Rham cochains. This reduces the study of rational topological spaces to that of
commutative dg-algebras. This has led to some spectacular practical advances; for example, the
rational homotopy groups of spheres and many other spaces are now completely understood.

In a tour de force, Mandell [17] showed that it was possible to go one step further, and that the
study of all nilpotent, finite type spaces integrally can be reduced to studying E∞-algebras. In terms
of computation, less mileage seems to have been got from this than rationally; largely because
E∞-algebras are usually very complicated objects, generated by infinitely many n-ary operations,
and which are not naturally amenable to being studied computationally. We are unaware of any
implementations of even simple procedures such as Groebner bases for general E∞-algebras. In
contrast, the strictly commutative algebras appearing in rational homotopy theory are, almost
uniquely, suited to being studied via computer algebraic approaches such as using GAP or Sage
due to the fact they are generated by a single binary operation displaying the simplest possible
behaviour. Most of these techniques are not available even one step up, when working with cup-
1-algebras - algebras that are commutative up to strictly commutative homotopy [11, Definition
4.18].

The goal of this article is therefore to provide strictly commutative models for spaces over the
p-adic numbers Ẑp . The central problem is that it is not possible to capture all of the information
about the homotopy type of the spaces this way. This because the Steenrod operations act as
obstructions to strict commutivity. In particular, we have that the zeroth Steenrod power operation
P 0 never vanishes on E∞-algebras with the homotopy type of spaces. Therefore, we can only
hope to study approximations that carry some of this information. There are multiple possible
approaches. Mandell [18] has suggested for n-connected spaces X at most primes, it may be
possible to (non-functorially) truncate the E∞-structure on C∗ (

X , Ẑp
)

to an En-structure and find
a strictly commutative model for this truncation. While we think this is a interesting point of view

1



and worthy of further study, in this paper we have opted for a more functorial approach. We further
explain which well-known invariants may be extracted from it.

In this paper, we study a generalisation of Sullivan’s approach to homotopy theory. Recall that
this involves defining a cochain algebra, that is a functor

APL : △→CDGA

which extends to
APL : sSet→CDGA

by the universal property of simplicial sets. We shall recall this in more detail later, but for now it
suffices to recall that

APL
(
∆n)= Q (t0, ..., tn ,d t0, ...,d tn)

(
∑

ti −1,
∑

d ti )

The problem with doing this in positive characteristic is that Sym is not a homotopy invariant func-
tor. In 1979, Cartan [8] generalised the work of Sullivan [21] to a slightly more general framework.
In particular, Example 4 from that paper uses divided power algebras

Gr
(
∆n)= Z〈s〉〈t0, ..., tn ,d t0, ...,d tn〉

(
∑

ti − s,
∑

d ti 〉
where 〈−〉 denotes the free divided power algebra. Cartan computes the cohomology of the
extension to sSet and proves that a subring of the cohomology is isomorphic to the singular
cohomology ring of X .

We, initially independently, had the same idea of modifying Sullivan’s construction using divided
power algebras. However, instead of working with Z〈s〉, we found it more convenient to localise at
a fixed prime p and work over Ẑp , with p itself playing the role of s. This way, we are able to extract
the singular cohomology ring of C∗ (

X , Ẑp
)

itself from the construction, which we call the Ẑp -de
Rham forms on X .

Theorem 1.1. Let X be a simplicial set. The cohomology ring of the p-adic de Rham complex Ω∗ (X )
is isomorphic to the singular cohomology of X . In other words, one has a ring isomorphism

H∗ (
Ω∗ (X )

)∼= H∗ (
X , Ẑp

)
.

After computing the cohomology ring, from a modern perspective, the natural next step is
interpret the higher information contained the Ẑp -de Rham forms. To that end, we show (Theorem
3.17) that our construction, as an E∞-algebra, is equivalent to the following subalgebra of the
singular cochains. In this sense, our work is the logical continuation of that by Cartan and sheds
new light on many of the constructions of [8].

Definition 1.2. Let X be a simplicial set. We define the p-shifted singular cochain algebra
D∗ (

X , Ẑp
)

to be the following subalgebra of the singular cochains C∗ (
X , Ẑp

)
.

Dn (X ) =
〈

p iσ : for σ ∈C n (
X , Ẑp

)
and

{
i = n if dσ= 0.

i = n +1 otherwise.

〉

The differential and the E∞-structure are that induced by those on C∗ (
X , Ẑp

)
.

This also reveals an unexpected connection with the theory of crystalline cohomology for
schemes. The same object as above can be viewed as ηp

(
C∗ (

X , Ẑp
))

, where η is the Berthelot-
Ogus-Deligne [2, 9] décalage functor, which is defined as the connective cover with respect to the
Beilinson t-structure on filtered complexes. In our case we we are working in complexes over
Ẑp with the p-adic filtration. In Cartan’s case, he was working in complexes over Z〈s〉 with the
filtration generated by the ideal (s). In particular, this ties in with the work of Bhatt-Lurie-Mathew
[3, Thereom 7.4.7, Example 7.6.7], which states that, in the ∞-categorical context, the fixed points
of the left derived functor Lηp of ηp acting on the derived category of p-complete dg-Ẑp -modules
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is equivalent to a 1-category. The de Rham forms appearing in our and Cartan’s work can therefore
be seen supplying a convenient strictly commutative model for this rectification when working
with spaces.

Theorem 3.17 also has some immediate applications. It means that the Ẑp -de Rham forms can
be used to compute Massey products up to a factor, including in the torsion part of the cohomology,
which has proven useful, in, for example, [14] for specific classes of spaces. We conclude with a
result on formality which was inspired by a conjecture of Mandell’s [18].

Theorem 1.3. Let X be a finite simplicial set such that APL (X ) is formal overQ. For all but finitely
many primes, Ω∗ (X ) is formal over Ẑp as a dg-commutative dg-algebra.

Finally, we show that the Ẑp -de Rham forms are the best functorial strictly commutative approx-
imation to the singular chains. We do this by exhibiting examples of spaces X such that C∗(X , Ẑp )
cannot be rectified as an associative algebra. The obstructions in question are incompatible Massey
products in C∗(X ,Fp ), which is precisely the information lost by the Ẑp -de Rham forms.

Structure of the article

This paper has the following structure. First we recall some preliminaries on rational homotopy
theory, divided power algebras and E∞-algebras. Then in part 3, we define the de Rham forms,
compute ther cohomology and relate them to a subalgebra of the singular cochains complex.
Finally, in part 4, we examine the homotopy invariants that can be extracted from the p-adic de
Rham forms and prove a formality theorem. In part 4, we construct an example of a space X with
non-vanishing higher Steenrod operations on its E1-algebra structure.
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Notation and conventions

In this paper, we work on the category of unbounded cochain complexes over some base field or
ring with cohomological convention. That is, the differential d : A∗ → A∗+1 of a cochain complex
(A,d)is of degree 1. The degree of a homogeneous element x is denoted by |x|. The symmetric group
on n elements is denoted Sn . We follow the Koszul sign rule. That is, the symmetry isomorphism

U ⊗V
∼=−→ V ⊗U that identifies two graded vector spaces is given on homogeneous elements by

u⊗v 7→ (−1)|u||v | v⊗u. Algebras over operads are always differential graded (dg) and cohomological.
We will frequently omit the adjective "dg" and assume it is implicitly understood. The ring of p-adic
numbers is denoted Ẑp . We shall generally take the perspective that this is the completion of Z(p)

with respect to the p-adic norm. The functor of p-adic de Rham forms Ω (−) generally depends on
a prime p, but to avoid needing to specify this each time, we shall assume that p is fixed.

This is a short article and we do not intend to load it excessively with recollections; so therefore
we refer to [16] for the definition of an operad and other basic notions.
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2 Preliminaries

In this part, we shall discuss the basic preliminaries. First, we shall discuss E∞-algebras and why
they model spaces. Next, we shall review the basic ideas from rational homotopy theory that we
shall need. Then, we shall discuss the different notions of algebra in mixed characteristic and
define divided power algebras. Finally, we shall define the homotopy categories of commutative
and E∞-algebras. This last section contains some non-standard material, and is likely the only
section the expert reader needs to read.

2.1 E∞-algebras and Steenrod operations

The free commutative algebra functor is not homotopy invariant in positive or mixed characteristic.
The essential problem is that Com (n) = k is not free as a representation of Sn . The traditional
way of fixing this is by replacing Com with a weakly equivalent operad E such that, for each n, the
action of Sn on E (n) is free. There is some room for choice here, and any such operad is called
an E∞-operad. The precise choice of E∞ operad we shall use in this article is the Barratt-Eccles
operad E . The reader should note that our results will also hold for any other E∞-operad. For more
information about the Barratt-Eccles operad, see [1].

Definition 2.1. The simplicial sets defining the Barratt-Eccles operad in each arity are of the form

E (r )n = {(w0, . . . , wn) ∈Sr ×·· ·×Sr }

equipped with face and degeneracy maps

di (w0, . . . , wn) = (w0, . . . , wi−1, ŵi , wi+1, . . . , wn)

si (w0, . . . , wn) = (w0, . . . , wi−1, wi , wi , wi+1, . . . , wn) .

Sr acts on E (n) diagonally, that is to say if σ ∈Sn and (w0, . . . , wn) ∈ Γ (n) the

(w0, . . . , wn)∗σ= (w0 ∗σ, . . . , wn ∗σ)

Finally the compositions are also defined componentwise via the explicit composition law of

γ :S (r )⊗S (n1)⊗·· ·⊗S (nr ) →S (n1 +·· ·+nr )

(σ,σ1, . . . ,σr ) 7→σn1···nr ◦ (σ1 ×·· ·×σr )

where σn1···nr is the permutation that acts on n1 +·· ·+nr elements, by dividing them into r blocks,
the first of length n1, the second of length n2 and so on. It then rearranges the blocks according to
σ, maintaining the order within each block.

Remark 2.2. As defined above, the Barratt-Eccles operad is an operad in simplicial sets. It becomes
an operad in non-negatively graded chain complexes after applying the singular chains functor.
When we work in cohomological grading and cochain complexes, it is will be concentrated in
non-positive degrees and is unbounded below. In this article, the notation E shall always refer to
the operad in cochain complexes.

Of course, the main reason why the Barratt-Eccles operad is used is that the cochain complex of
a space X is an algebra over it (with integral coefficients).

Theorem 2.3. [1] For any simplicial set X , we have evaluation products E (r )⊗C∗ (X )⊗r →C∗ (X )
which are functorial in X which give the cochain complex C∗ (X ) the structure of an algebra over
the Barratt-Eccles operad E . In particular, the classical cup-product of cochains is an operation
µ0 : C∗ (X )⊗2 →C∗ (X ) associated to an element µ0 ∈ E (2)0 .

2.2 Rational homotopy theory

In this section, we review the rational case and explain the connection between E∞ algebras,
rational topological spaces and strictly commutative. We begin by explaining the constructions
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Sullivan’s APL functor, which will be our basis for later constructing the p-adic de Rham form
functor Ω. In particular, in Proposition 2.4 we shall explain why Sullivan’s approach does not
work in positive characteristic. Next, we explain the equivalence in approach with that of singular
cochains. Next, we shall discuss the rectification of E∞-algebras with rational coefficients. Finally,
we conclude by explaining Cartan’s approach to cochain algebras.

2.2.1 Sullivan’s approach to rational homotopy theory

In this section, we briefly revise Sullivan’s approach to homotopy theory [21]. In general, if R is a
commutative ring, we call any functor sSet→CDGAR a cochain algebra. Recall that the Sullivan’s
PL-forms functor APL : sSet→CDGAQ, also called the rational de Rham forms functor, is explicitly
defined by taking simplicial set maps against the cochain algebra A∗• ,

APL (X ) = sSet (X , A•) ,

where

An = APL
(
∆n)= Sym(t0, ..., tn ,d t0, ...,d tn)

(
∑

ti −1,
∑

d ti )
∼= Sym(t1, ..., tn ,d t1, ...,d tn) .

Here, each ti is of degree 0, and d ti is a degree 1 generator identified with d (ti ) by abuse of
notation. See [21, 4]. The object sSet

(
X , A∗•

)
is a commutative dg-algebra where sSet

(
X , A∗•

)
k =

HomsSet
(
X ,Ωk•

)
and the differential is induced by the differential Ωk• →Ωk+1• . The algebras Ωn

are, in a very precise sense, the polynomial differential forms with rational coefficients on the
n-simplex, and gather into a simplicial object Ω• in the category CDGAQ.

In the case of APL , cochain algebras satisfy two additional key properties. First is the Poincaré
Lemma, which asserts that

H̃∗ (An ;Q) = 0.

Second is extendablity ; which asserts that the restriction map APL (X ) → APL (Y ) is surjective for
every inclusion of simplicial sets Y ⊆ X . Although the polynomial forms exist over any base ring R,
it is essential thatQ⊆ R for the Poincaré lemma to hold. To prove this, one can observe that

APL
(
∆n)∼= (

Q[t ]⊗Sym(d t )
)⊗n ,

then give an explicit contraction K : Q[t ]⊗ Sym(d t )
≃−→ Q, given by geometric integration, and

extend it (non-canonically) as a contraction from the n-fold tensor product toQ. Although there
are choices for this extension, there is a choice given by geometric integration which is quite natural.
For example, the explicit formulas for ∆2 can be taken to be

K
(
t n

j d t j

)
= 1

n +1
t n+1

j , j = 1,2,

K
(
t n

1 t m
2 d t1d t2

)= 1

2

(
1

n +1
t n+1

1 t m
2 d t2 + 1

m +1
t n

1 t m+1
2 d t1

)
.

Here, we see the fundamental role played by division by n. In positive characteristic, this is
impossible to achieve. hat is, if we consider the functor Ap

PL : sSet→CDGAFp , constructed in the
the same manner as APL but with Fp -coefficents, then for every prime p, the cohomology algebra
H̃∗ (

An ;Fp
)

is non-trivial, see Proposition 2.4 for the precise computation which we learned from
José Moreno-Fernández.

Proposition 2.4. The cohomology of A2
PL (∆n) with F2-coefficients is in bijection with the tuples(

α1, ...,αn ,β1, ...,βn
) ∈Zn

≥0 × {0,1}n

satisfying

αi even =⇒ βi = 0, and αi odd =⇒ βi = 1.

For a fixed tuple as above, its cocyle representative is explictly given by

tα1
1 · · · tαn

n (d t1)β1 · · · (d tn)βn .
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Proof. First, we compute the cohomology with F2-coefficients of APL
(
∆1

)
. Identify APL

(
∆1

) =
S (t ,d t ). Applying Leibniz’s rule inductively, we find that

d
(
t k

)
= kt k−1d t for allk.

Therefore, the non-trivial cocyles of APL
(
∆1

)
are all the even powers t 2k in degree 0 and all the

elements of the form t 2k+1d t for k ≥ 0 in degree 1. By inspection, these cohomology classes are all
distinct. Thus,

H n (
APL

(
∆1) ;F2

)={[
t 2k

] ∀ k ≥ 0 in degree 0,[
t 2k+1d t

] ∀ k ≥ 0 in degree 1.

It is well-known that APL (∆n) ∼= APL
(
∆1

)⊗n
, with the following identifications for all i = 1, ...,n:

ti = 1⊗·· ·⊗ t︸︷︷︸
i

⊗·· ·⊗1, and d ti = 1⊗·· ·⊗ d t︸︷︷︸
i

⊗·· ·⊗1.

Since we are working over a field, the Künneth map is an isomorphism, so that

H∗ (
APL

(
∆n))∼= H∗

(
APL

(
∆1)⊗n

)∼= H∗ (
APL

(
∆1))⊗n

.

A straightforward computation gives the cohomology classes mentioned in the statement.

2.2.2 Comparison between de Rham forms and singular cochains

We next explain the comparison between the APL functor and the singular cochains C∗ (−,Q)
functor. The material in this section is essentially due to Sullivan [21], Bousfield-Gugenheim [4]
and Mandell [17]. Recall that C∗ (△∗,Q) is a simplicial E -algebra, with the E -algebra structure
given by Theorem 2.3.

Definition 2.5. Let A∗ and B∗ be simplicial E -algebras. The tensor product (A⊗B)∗ is given by

(A⊗B)k (△n)= ⊕
i+ j=k

Ai (△n)⊗B j (△n)
This object is equipped with the obvious face and degeneracy maps. The E -algebra structure on
(A⊗B)∗ (△n) is induced from the diagonal on E in the obvious way.

Proposition 2.6. [21] Suppose that A∗ and B∗ are extendable cochain algebras over Q that both
satisfy the Poincaré lemma. Then (A⊗B)∗ also satisfies the Poincaré lemma and is extendable. In
particular,

H∗ (A⊗B) (X ) = H∗ (X ,Q)

Now one has the following zig-zag of simplicial E -algebras.

A∗
PL

(△∗) id⊗1−−−→ (
APL ⊗C∗)(△∗) 1⊗id←−−−C∗ (△∗)

(1)

For all X ∈ sSet, this extends to a zig-zag of E -algebras by the universal property of simplicial sets

A∗
PL (X )

∼−→ (APL ⊗C )∗ (X )
∼←−C∗ (X )

and by Proposition 2.6, these maps are quasi-isomorphisms.

2.2.3 Rectification

There is a weak equivalence of operads φ : E
∼−→ Com, so it is natural to ask whether or not the

pair
(
φ∗,φ!

)
forms a Quillen equivalence between E -algebras and Com-algebras. If there is, then

rectification is said to occur. With coefficients inQ, this is indeed the case; see for example [22]. In
particular, this implies that, in zero characteristic, that every E -algebra A has a strictly commutative
model given by φ! (A) .
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2.2.4 Cartan’s approach to cochain algebras

Outside of characteristic zero, it appears to be very difficult to find cochain algebras that both
satisfy the Poincaré Lemma and which are extendable. In [8], Cartan extended Sullivan’s approach
to more general cochain algebras. In particular, he proved the the following generalisation of
Theorem 2.6.

Theorem 2.7. [8] Let R be a commutative ring, X be a simplicial set and A∗• be a simplicial cochain
R-algebra. Let the simplicial cochain R-algebra Z k A be given by the kernel of the differential
d : Ak → Ak+1. Suppose further that πi

(
Ak

)
and πi

(
Z k A

)
are zero when i ̸= k. Then one has a

natural isomorphism H k (A (X )) ∼= H k
(
X ,πk

(
Z k A

))
. Moreover this isomorphism is multiplicative

when the Z k A are flat R-modules.

2.3 Algebras over an operad over a ring of positive characteristic

The concept of a divided power algebras was first introduced by Cartan [7] for the commutative
operad, and by Fresse [13] for more general operads. In this section, we recall the general definition
and, in particular, we explain how to compute the free commutative divided powers algebra on a
free module.

Definition 2.8. [13] Let A be dg-module over a commutative unital ring. We say that A is a
P -algebra if it is an algebra over the monad

P (V ) =
⊕
n≥0

(
P (n)⊗V ⊗n)

Sn
.

An algebra over the monad

P (V ) =
⊕
n≥0

(
P (n)⊗V ⊗n)Sn ,

is referred to as a divided powers P -algebra.

Remark 2.9. The notion of a P -algebra and a divided powers P -algebra coincide over a field
of characteristic 0. With more general coefficent rings however, there are many examples of
P -algebras that are not divided powers P -algebras.

We shall mainly be interested in the case P =Com, so it will be useful to be more explicit in this
case. Let R be a commutative unital ring. The cofree conilpotent coalgebra on a graded projective
R-module V , also called tensor coalgebra on V , is the graded R-module

T V = ⊕
k≥0

T kV , (2)

where T kV =V ⊗k for all k, endowed with the deconcatenation coproduct,

∆[v1| · · · |vn] =
n∑

i=0
[v1| · · · |vi ]⊗ [vi+1| · · · |vn].

A basis tensor of T V is therefore denoted [v1| · · · |vn] rather than v1 ⊗ ·· · ⊗ vn . The direct sum
decomposition in (2) is called the word-length decomposition of T V , and elements in T kV are said
to be of word-length k. The tensor coalgebra can be endowed with the associative and commutative
shuffle product ⊛,

explicitly given by

[v1| · · · |vp ]⊛ [vp+1| · · · |vn] = ∑
σ∈S(p,q)

ε (σ) vσ−1(1) ⊗·· ·⊗ vσ−1(n).

Here, S
(
p, q

)
is the set of

(
p, q

)
-shuffles, given by those permutations of p +q elements such that

σ (1) < ·· · <σ(
p

)
and σ

(
p +1

)< ·· · <σ(
p +q

)
,
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while ε (σ) stands for the Koszul sign associated to the permutation σ. Endowed with the decon-
catenation coproduct and the shuffle product, T V is a commutative bialgebra.

There is a natural action of the symmetric group Sn on the word-length n components of T V ,
given by

σ · [v1| · · · |vn] = ε (σ) · [vσ−1(1)| · · · |vσ−1(n)].

For each n, one can form the submodule of Sn-invariants under this action, that is, the submodule
generated by those word-length n homogeneous elements x with σ · x = x for all σ ∈ Sn . Denote by
ΓnV this submodule of T nV . Summing over all n, we form a graded submodule of T V ,

Γ (V ) =
⊕
n≥0

ΓnV.

The submodule ΓV happens to be a subalgebra of T V , and it is called the free commutative divided
powers algebra on V . It comes equipped with set-theoretical maps γk : ΓV → ΓV determined by

γ0 (v) = 1 for all v ∈V2n ,

γn (v) = [v | · · · |v](n times if v is of even degree and n ≥ 1, and

γn (v) = 0 if v is of odd degree and n ≥ 2.

In particular, the following two identities are satisfied on homogeneous elements (the second one
only when u is of even degree):

γn (u + v) =
n∑

i=0
γi (u)γn−i (v) ,

γi (u)γ j (u) =
(

i + j

i

)
γi+ j (u) .

Intuitively, the element γn (u) is a replacement of the element un

n! whenever it does not make sense
to divide by n!.

Assume V is freely generated by the homogeneous elements {vi }. Then, an R-linear basis of ΓV
is explicitly given by elements of the form

γk1 (v1)γk2 (v2) · · ·γkr (vr )

for all r ≥ 0, ki ≥ 0, with ki ∈ {0,1} if |vi | = 1.

Example 2.10. Let t ≥ 1. A very useful example occurs when V is a free R-module R⊗t with
basis x1, . . . xt . In this case ΓV is usually called divided power polynomial algebra and denoted
R〈x1, . . . , xt 〉. Explicitly, we have that

R〈x1, . . . , xt 〉 := ⊕
n1,...,nt≥0

Rx[n1]
1 , . . . , x[nt ]

t

with multiplication is given by

x[n]
i x[m]

i = (n +m)!

n!m!
x[n+m]

i

We also set xi = x[1]
i . Note that 1 = x[0]

1 · · ·x[0]
t . There is an canonical R-algebra map R〈x1, . . . , xt 〉→

R sending x[n]
i to zero for n > 0. The kernel of this map is denoted R〈x1, . . . , xt 〉+

Example 2.11. When R = Fp , as a commutative dg-algebras

Fp〈x〉 =
{
Fp [x1, x2, . . . ]/

(
xp

1 , xp
2 , . . .

)
with |xk | = k|x|, when |x| is even.

Fp [x]/
(
x2

)
otherwise.

Example 2.12. When R = Ẑp , the divided powers algebra Ẑp〈x1, . . . xt 〉 is a subalgebra of usual
polynomial algebraQp [x1, . . . xt ] via the injective map

Ẑp〈x1, . . . xt 〉 ,→Qp [x1, . . . xt ]

x[n]
i 7→ 1

n!
xn

i
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2.4 The homotopy theory of E -algebras and commutative dg-algebras

In this subsection we shall discuss the existence of model structures on categories of P -algebras
and specialise to the cases of E -algebras. The key takeaway of this subsection is that, in this paper,
we shall work with the external homotopy category of commutative algebras instead of the naive
(internal) one.

2.4.1 The case of E∞ algebras

One has the following general fact.

Theorem 2.13. [15] Let P be a S-split (or cofibrant) operad over a commutative ring R. Then the
category of P -algebras over R is a closed model category with quasi-isomorphisms as the weak
equivalences and surjective maps as fibrations.

The Barratt-Eccles operad isS-split. This immediately gives the model structure on E∞-algebras
over Ẑp .

Definition 2.14. The model category E−alg of E∞-algebras is the category of algebras over the
Barratt-Eccles operad, in dg-modules over Ẑp , equipped with the model structure of Theorem
2.13. It has quasi-isomorphisms of chain complexes as weak equivalences and surjective maps as
fibrations.

2.4.2 The case of commutative dg-algebras

We have already mentioned that in characteristic 0, the homotopy theory of commutative dg-
algebras coincides with that of E -algebras. In positive characteristic the relationship is much more
complex. Commutative dg-algebras come with an obvious notion of weak equivalence, that is,
algebra maps that are quasi-isomorphisms of cochain complexes. Localising with respect to these
maps gives a well-defined homotopy category, which we call the internal homotopy category. The
main result of [12] shall show that this is the wrong homotopy category to consider when working
with spaces. Instead, we shall consider the external homotopy category.

Definition 2.15. The external homotopy category of commutative algebras is defined by taking the
full subcategory of E−alg given by E -algebras that are quasi-isomorphic to strictly commutative
dg-algebras and localising it at quasi-isomorphisms of E -algebras.

The external homotopy category of commutative algebras is clearly a full subcategory of the
homotopy category of E -algebras. It works well for forming constructions such as derived mapping
spaces.

3 The de Rham forms over Ẑp

We saw in Proposition 2.4, that Sullivan’s APL functor fails to generalise to positive characteristic.
This problem can partially be solved by trading the free polynomial algebra appearing in the defini-
tion for a free divided powers algebra. The resulting object,Ω∗ (X ), has the correct cohomology but
is not quasi-isomorphic to the singular cochains on X as an E -algebra. It is however very closely
related. We shall see in the next part that it enables us to define and calculate Massey products
in situations where this machinery was previously inconvenient, for example, one has Massey
products arising in the torsion part of the cohomology.

This section of the paper is broken into four subsections. The first is devoted to defining Ω∗ (X ).
In the second, we compute the cohomology of this object. In the third, we explain how it is related
to the singular cochain algebra. Finally, in the fourth, we explain the universal property defining it.
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3.1 The algebra of p-adic de Rham forms

In this subsection, we introduce the key object of this paper - a generalisation of Sullivan PL-forms
to the p-adic setting. We show that this generalisation satisfies the Poincaré lemma, but not the
extendable condition (as defined in Section 2.2.1). As mentioned in the introduction, a similar
object to Ω∗ (X ) appears in [8, Section 4].

Definition 3.1. The p-adic de Rham cohain algebra Ω∗• is a simplicial cochain algebra that has for
n-simplices

Ω∗
n =

(
Ẑp〈x0, . . . xn〉⊗Λ (d x0, . . . ,d xn)(
x0 +·· ·+xn −p,d x0 +·· ·d xn

))c

, |xi | = 0, |d xi | = 1.

Here, the (−)c indicates that we are taking the closure of this set under an formal interchange of
variables

xr 7→ p −
j∑

i=0
xki

d xr 7→ −
j∑

i=0
d xki

for all r and such that the xki are all distinct from each other and from xr .
The differential d :Ω∗

n →Ω∗+1
n is determined by the formula

d
(

f
)= n∑

i=0

∂ f

∂xi
d xi

for f ∈ Γp (x0, . . . , xn)/
(
x0 +·· ·+xn −p

)
and then extended by the Leibniz rule. The simplicial

structure is defined as follows

d n
i :Ω∗

n →Ω∗
n+1 : xk 7→


xk for k < i .

0 for k = i .

xk−1 for k > i .

and

sn
i :Ω∗

n →Ω∗
n−1 : xk 7→


xk for k < i .

xk +xk+1 for k = i .

xk+1 for k > i .

Example 3.2. The 0-simplices Ω0• are given by

Ẑp〈x0〉⊗Λ (d x0)(
x0 −p,d x0

) = Ẑp [p,
p2

2
, . . .

pk

k !
, . . . ] = Ẑp

On the other hand, one has that

Ẑp〈x0〉⊗Λ (d x0)

(x0 −1,d x0)
= Ẑp [

1

p
,

1

2 ·p2 , . . .
1

k ! ·pk
, . . . ] = Q̂p .

This is why we must impose the condition that x0+·· ·+xn = p and cannot imitate the x0+·· ·+xn = 1
condition from the definition of the algebra of piecewise polynomial forms.

The p-adic de Rham forms cochain complex have one of the two desirable properties of a
cochain algebra: they satisfy the Poincaré lemma.

Proposition 3.3. The simplicial cochain algebra Ω∗ satisfies the Poincaré lemma. In other words:

H i (
Ω∗

n

)={
Ẑp if i = 0.

0 otherwise.
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Proof. Observe that one has the following isomorphism of cochain algebras

Ẑp〈x0, . . . xn〉⊗Λ (d x0, . . . ,d xn) ∼= (
Ẑp〈x〉⊗Λ (d x)

)⊗n+1
.

Since Ẑp〈x〉⊗Λ (d x) is free as a Ẑp -module, we can apply the Künneth theorem to deduce

H∗ (
Ẑp〈x0, . . . xn〉⊗Λ (d x0, . . . ,d xn)

)= H∗ (
Ẑp〈x〉⊗Λ (d x)

)⊗n+1
.

So the problem reduces to computing H∗ (
Ẑp〈x〉⊗Λ (d x)

)
. The elements x[i−1]d x form a linear

base for the degree 1 part of this algebra. Further, one has d
(
x[i ]

) = x[i−1]d x. The conclusion
follows.

As in Section 2.2.1, we now Kan extend our cochain algebra along the inclusion △∗ → sSet.

Definition 3.4. Let X be a simplicial set and let p be a fixed prime number.. The p-adic de Rham
forms on X is the commutative dg-algebra

Ω∗ (X ) = sSet
(
X ,Ω∗

•
)

.

where sSet (X ,Ω•)k = HomsSet
(
X ,Ωk•

)
and the differential is induced by the differentialΩk• →Ωk+1• .

The main difficulty with this approach is that Ω∗• is not an extendable cochain algebra. In
subsection 3.2, we shall use Theorem 2.7 to resolve this problem.

Proposition 3.5. The cochain algebra Ω∗• is not extendable.

Proof. Recall that Ω∗ (△0
)

is Ẑp . It follows that Ω∗ (
∂△1

)= Ẑp ⊕ Ẑp . Consider the element
(
1, p

) ∈
Ω∗ (

∂△1
)

. It suffices to prove that there does not exist a polynomial f (x0, x1) ∈Ω∗ (△1
)

such that
f
(
0, p

)= 1 and f
(
p,0

)= p.

Indeed, assume towards contradiction that such an f exists. Then, as p is not invertible in
Ẑp , f

(
0, p

)= 1 implies that f has a constant term which is not divisible by p. On the other hand,
f
(
p,0

) = p implies that the constant term of f is divisible by p. We have obtained the desired
contradiction. We can conclude that the map Ω∗ (△1

)→Ω∗ (
∂△1

)
is not surjective and therefore

that Ω∗• is not extendable.

3.1.1 Some examples

To illustrate the definition of Ω∗ (X ), we compute some examples for specific topological spaces X .
First, we have the most trivial case.

Example 3.6. When X is a standard n-simplex, one has the de Rham forms Ω∗ (△n) =Ω∗
n , where

Ω∗
n is the algebra defined in Definition 3.1.

Next, we compute the next simplest group of examples, the spheres of various dimension.

Example 3.7. For the usual simplicial model of S1 =△1/∂△1, one has the following: the Ẑp -module
Ω0

(
S1

)= (x0x1)⊕ Ẑp , where (x0x1) is the ideal generated by the monomial in

Ẑp〈x0, x1〉(
x0 +x1 −p

)
This can also be written, purely in terms of one variable as the ideal generated by x2

0 −px0. In the
classical computation by Sullivan, this ideal would have been generated by x2

0 −x0. The Ẑp -module
Ω1

(
S1

)
is

Ẑp〈x0, x1〉d x0 ⊕ Ẑp〈x0, x1〉d x1(
x0 +x1 −p,d x0 +d x1

) = Ẑp〈x0〉d x0.

One can easily compute the cohomology ofΩ∗ (
S1

)
. One has H 0

(
Ω∗ (

S1
))= Ẑp , which is generated

by 1. One therefore also has H 1
(
Ω∗ (

S1
))= Ẑp which is generated by d x0.
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In general it follows that, for Sn =△n/∂△n , one has that

Ωi (
Sn)={

Ẑp〈x0, x1, · · ·xn−1〉d x0 ∧d x1 ∧·· ·∧d xn−1 for i = n.(
{xσ(0)xσ(1) . . . xσ(i )d xσ(i+1) ∧·· ·∧d xσ(n) :σ ∈Sn+1}

)
for i < n.

where Sn+1 acts on the set of indices {0,1, · · · ,n} by permutation and we replace xn with p −x0 +
·· ·+xn−1 and d xn with −d x0 +·· ·−d xn−1. One therefore recovers that H n (Ω∗ (Sn)) = Ẑp which is
generated by d x1 ∧·· ·∧d xn−1.

We conclude this section by computing an example with non-trivial torsion in its cohomology
and therefore which would not have been possible to model in Sullivan’s framework.

Example 3.8. The space RP 2 has a simplicial model X with nondegenerate simplices given by
X2 = {U ,V }, X1 = {a,b,c} and X0 = {v, w}, with face maps as follows

δ0U = b, δ1U = a, δ2U = c, δ0V = a, δ1V = b, δ2V = c,

δ0a = w, δ1a = v, δ0b = w, δ1b = v, δ0c = v, δ1c = v

We therefore compute Ω∗(RP 2). One can easily verify that

Ω2 (
RP 2)= Ẑp〈x0, x1〉d x0 ∧d x1 ⊕ Ẑp〈y0, y1〉d y0 ∧d y1

Next, one wants to compute Ω1
(
RP 2

)
. Elements contained in this are clearly of the form

f =U0(x0, x1, x2)d x0 +U1(x0, x1, x2)d x0 +U2(x0, x1, x2)d x2+
V0(y0, y1, y2)d y0 +V1(y0, y1, y2)d y0 +V2(y0, y1, y2)d y2

where Ui ,Vi ∈ Ẑp〈t0, t1, t2〉 and must satisfy relations coming from the simplicial structure of X .
Firstly δ0U = δ1V ,δ1U = δ0V and δ2U = δ2V. This implies that

U1(0, t , s) =V0(t ,0, s), U2(0, t , s) =V2(t ,0, s) V1(0, t , s) =U0(t ,0, s), V2(0, t , s) =U2(t ,0, s)

U0(t , s,0) =V0(t , s,0), U1(t , s,0) =V1(t , s,0)

Lastly, we have the bottom row of relations, which imply that

U0(s,0,0) =U1(0, s,0)

Similarly the elements of Ω0
(
RP 2

)
are of the form

f (x0, x1, x2)+ g (x0, x1, x2)

with f , g ∈ Ẑp〈t0, t1, t2〉 and where

f (0, s, t ) = g (s,0, t ), f (s,0, t ) = g (0, s, t ), f (s, t ,0) = g (s, t ,0)

and
f (s,0,0) = f (0, s,0).

3.2 The cohomology ofΩ∗ (X )

In this section, we compute the cohomology ring of Ω∗ (X ) and show that it coincides with the
usual cohomology ring of X . The main result is the following theorem.

Theorem 3.9. Let X be a simplicial set. The cohomology ring of Ω∗ (X ) is isomorphic to the singular
cohomology of X . In other words, one has a ring isomorphism

H∗ (
Ω∗ (X )

)∼= H∗ (
X , Ẑp

)
.
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The arguments in this section are very similar to that in [8, Section 4]. The strategy is that to
apply Theorem 2.7. In order to do so, it is necessary to compute the homotopy groups πi

(
Ωk

)
and

πi
(
Ωk

)
.

Proposition 3.10. The homotopy groups of Ωk are as follows:

πi

(
Ωk

)
=

{
Z/pZ when i = k

0 otherwise.

with the generator of πi
(
Ωk

)
being d x0 ∧d x1 ∧·· ·∧d xk−1.

First, make the auxiliary definition.

Ω
∗
n =

(
Ẑp〈x0, . . . xn〉⊗Λ (d x0, . . . ,d xn)(

x0 +·· ·+xn −p
) )c

, |xi | = 0, |d xi | = 1.

Here, the (−)c indicates that we are taking the closure of this set under an formal interchange of
variables

xr 7→ p −
j∑

i=0
xki

for all r and such that the xki are all distinct from each other and from xr .

Let N∗(−) be the normalised chains functor. The homotopy groups πi

(
N∗

(
Ω

∗))
are as follows.

Lemma 3.11. The homotopy groups of N∗
(
Ω

∗)
are as follows:

πk

(
N∗

(
Ω

∗))
=

{
Z/pZ when k = 0

0 otherwise.

Proof. Suppose k > 0, then consider a k-cycle ω (x0, . . . xk ) ∈Ωk such that ∂iω= 0. We may use the
closure condition to rewrite ω (x0, . . . xk ) such that ∂iω= 0 in

Ẑp〈x0, . . . xn〉⊗Λ (d x0, . . . ,d xn)

It then follows that the (k +1)-chain ω (x1, . . . xk+1) is such that ∂0ω (x1, . . . xk+1) =ω (x0, . . . xk ) and
∂iω (x1, . . . xk+1) = 0 for i > 0.

When k = 0, the chains are
Ẑp [x0](
x0 −p

) .

But the image of the differential is the ideal generated by (x0). So therefore

π0

(
N∗

(
Ω

∗))
= Ẑp [x0](

x0, x0 −p
) =Z/pZ.

Proof of Proposition 3.10. Consider the ideal I∗n of Ω
∗
n generated by d x0 +·· ·+d xn . One has the

relation
Ω∗

n =Ω∗
n/I∗n .

Multiplication by d x0 +·· ·+d xn sends Ω
i
n to Ω

i+1
n . Observe that the kernel of this map is I i

n . One
therefore has an exact sequence of simplical Ẑp -modules

0 → I i →Ω
i → I i+1 → 0

We therefore have that Ωi is isomorphic to I i+1. One has I 0 = 0, and therefore by induction, one
finds that πi

(
Ωk

) = 0 when i ̸= k and πk
(
Ωk

) = Z/pZ with the generator being d x0 ∧d x1 ∧·· ·∧
d xk−1.
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Now, since d ◦d = 0, one has a short exact sequence

0 → Z kΩ→Ωk → Z k+1Ω→ 0.

where the first map is the inclusion and the last map is surjective because Ω satisfies the Poincaré
Lemma.

Again one can consider the long exact sequence in homotopy. First, one observes thatπi
(
Z kΩ

)=
0 when i ̸= k,k −1 and therefore one has an exact sequence

0 →πk

(
Z kΩ

)
→πk−1

(
Z k−1D

)
→πk−1

(
Ωk−1

)
→πk−1

(
Z kΩ

)
→ 0.

This identifies πk
(
Z kΩ

)
as a subgroup of πk−1

(
Z k−1Ω

)
. A routine computation shows that

π0
(
Z 0D

)= Ẑp ; and then one can show by induction that πk−1
(
Z k−1D

)→πk−1
(
Ωk−1

)
is surjective,

so it follows that πk−1
(
Z kΩ

)= 0. The induction therefore gives that

πk

(
Z kΩ

)
= pk Ẑp .

Finally, we observe that there is an isomorphism H k
(
X , pk Ẑp

)= H k
(
X , Ẑp

)
. We phrase the all of

the above as a proposition.

Proposition 3.12. The cohomology ring of Ω∗ (X ) is isomorphic to the singular cohomology of X . In
other words, one has a ring isomorphism

H∗ (
Ω∗ (X )

)= H∗ (
X , Ẑp

)
.

Proof. The computation above gives that

πk

(
Z kΩ

)
= pk Ẑp .

It therefore follows from Theorem 2.7 that H∗ (Ω∗ (X )) = H∗ (
X , Ẑp

)
. The Z kΩ are submodules of

the torsion-free Ẑp -modules Ωk . Therefore they are torsion-free modules over a PID and so are flat.
It therefore follows from Theorem 2.7 that the cohomology ring is as in the statement.

Remark 3.13. As in the rational case, one can check that there is a zig-zag of E -algebras.

Ω∗ (X )
i−→ (C ⊗Ω)∗ (X )

j←−C∗ (X ) .

which is induced by left Kan extending the zig-zig

Ω∗ (△∗) 1⊗id−−−→ (C ⊗Ω)∗
(△∗) id⊗1←−−−C∗ (△∗)

.

along △∗ → sSet. However, these maps do not descend to isomorphisms on cohomology. In fact,
one can verify that for X = S1, the map H 1 (1⊗ id) is multiplication by p. In the next subsection, we
shall discuss how one can remedy this.

3.3 The relationship between the p-adic de Rham forms and the algebra of
singular cochains

In this subsection, we upgrade the result of the previous section by explaining how to interpret
Ω∗ (X ) as an E -algebra. Given the nonvanishing of the Steenrod operation P 0, it has no chance of
generally being weakly equivalent to the singular cochains on X . However we shall show in this
section that it is quasi-isomorphic to the following subalgebra of C∗ (

X , Ẑp
)
. First, it is necessary to

establish some notation.
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3.3.1 The p-shifted singular cochains

In this subsubsection, we shall define the p-shifted singular cochains algebras.

Definition 3.14. Let X be a simplicial set. We define the p-shifted singular cochain algebra
D∗ (

X , Ẑp
)

to be the following subalgebra of the singular cochains C∗ (
X , Ẑp

)
.

Dn (X ) =
〈

p iσ : for σ ∈C n (
X , Ẑp

)
and

{
i = n if dσ= 0.

i = n +1 otherwise.

〉

The differential and the E structure are that induced by those on C∗ (
X , Ẑp

)
.

We quickly verify the basic properties of D∗ (X ); namely that D∗ (X ) is indeed a sub-E -algebra
and we compute its cohomology.

Proposition 3.15. Let X be a simplicial set, then p-shifted singular cochain algebra D∗ (X ) is a
sub-E -algebra of C∗ (

X , Ẑp
)

and has cohomology given by H∗ (
X , Ẑp

)
.

Proof. The first claim follows from the fact that for every operation µ ∈ E (r )k , the operation µ is lin-
ear in each variable. In particular, if xi ∈ D (X )r1 then xi = pr1 x ′

i . Therefore µ (x1, x2, · · ·xn) =
µ

(
pr1 x ′

1, pr2 x ′
2, · · ·prn x ′

n

) = pr1+···+rnµ(x1, x2, · · ·xn) ∈ D(X )r1+···rn−k . The cohomology of D∗ (X )
can be directly computed as

pn Z n
(
X , Ẑp

)
d

(
pnB n−1

(
X , Ẑp

)) = H∗ (
X , pnẐp

)= H∗ (
X , Ẑp

)
.

The lemma follows.

Remark 3.16. The underlying cochain complex of the p-shifted singular cochains complex functor
can be viewed as ηp

(
C∗ (

X , Ẑp
))

, where η is the the Berthelot-Ogus-Deligne [2, 9] décalage functor.
This is the connective cover with respect to the Beilinson t-structure on filtered complexes. In this
case, we are considering the filtration given by powers of the ideal (p). In this context, Theorem
3.17 of this article can be compared with Theorem 7.4.7 and Example 7.6.7 of [3], which suggest
that these objects should have strictly commutative models.

3.3.2 The equivalence

Now, we are ready to compute the homotopy type of Ω∗(X ).

Theorem 3.17. For every simplicial set X , there exists a cochain algebra V ∗ such that there is a
zig-zag of quasi-isomorphisms of E -algebras

Ω∗ (X ) V ⊗Ω∗ (X ) D∗ (
X , Ẑp

)f g

Remark 3.18. The same arguments go through for the complex Gr(X ) of [8] if one adjusts the
definitions of D∗ and of V ∗ appropriately with respect to the (s)-adic filtration.

The tensor product appearing in the statement is that of Definition 2.5. The proof strategy is to
construct a zig-zag similar to that of (1). First, we define V ∗.

Definition 3.19. Let X be a simplicial set. We define the V ∗ (X ) to be the following subalgebra of
the singular cochains C∗ (

X , Ẑp
)
.

V n (X ) =
〈

p iσ : for σ ∈C n (
X , Ẑp

)
and

{
i = 1 if n > 0 or dσ ̸= 0.

i = 0 if n = 0 and dσ= 0

〉

The differential and the E structure are that induced by those on C∗ (
X , Ẑp

)
.

Next, we compute the cohomology of V ⊗Ω (X ).
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Proposition 3.20. The cohomology of V ⊗Ω (X ) is H∗ (
X , Ẑp

)
.

Proof. The strategy is to compute both πi
(
(V ⊗Ω)k)

and πi
(
Z k (V ⊗Ω∗)

)
, and then the result will

follow by an immediate application of Theorem 2.7. The first step is observe that one has

πr

(
N∗

(
V k

))
=

{
Fp when i = 0.

0 otherwise.

where π0
(
V 0

)
is generated by 1. The cohomology of N∗

(
(V ⊗Ω)k•

)
can then be directly computed

using the Kunneth theorem. In particular one has the following short exact sequence⊕
i+ j=k

⊕
p+q=r

πp

(
V i

)
⊗πq

(
Ω j

)
→πr

(
(V ⊗Ω)k

•
)
→ ⊕

i+ j=k

⊕
p+q=r−1

Tor1

(
πp

(
V i

)
,πq

(
Ω j

))
First observe that πp

(
V i

) = 0 except when p = 0 and πq
(
Ω j

) = 0 except when q = j . We can
therefore deduce that ⊕

i+ j=k

⊕
p+q=r−1

Tor1

(
πp

(
V i

)
,πq

(
Ω j

))
= 0

We conclude that

πi

(
(V ⊗Ω)k

)
=

{
Fp when i = k

0 otherwise.

Now one has a short exact sequence

0 → Z k (V ⊗Ω) → (V ⊗Ω)k → Z k+1 (V ⊗Ω) → 0.

Again one can consider the long exact sequence in homotopy. First, one observes thatπi
(
Z k (V ⊗Ω)

)=
0 when i ̸= k,k −1 and therefore one has an exact sequence

0 →πk

(
Z k (V ⊗Ω)

)
→πk−1

(
Z k−1 (V ⊗Ω)

)
→πk−1

(
(V ⊗Ω)k−1

)
→πk−1

(
Z k (V ⊗Ω)

)
→ 0.

This identifies πk
(
Z k (V ⊗Ω)

)
as a subgroup of πk−1

(
Z k−1 (V ⊗Ω)

)
. Since π0

(
Z 0 (V ⊗Ω)

)= Ẑp and

one can show by induction that πk−1
(
Z k−1 (V ⊗Ω)

) → πk−1
(
(V ⊗Ω)k−1) is surjective, it follows

that πk−1
(
Z k (V ⊗Ω)

)= 0. The induction therefore gives that

πk

(
Z k (V ⊗Ω)

)
= pk Ẑp .

Therefore, since Z k (V ⊗Ω) is free, by Theorem 2.7, we have that H i (V ⊗Ω (X )) = H i
(
X , p i Ẑp

)=
H i

(
X , Ẑp

)
as desired.

We can now prove our main theorem.

Proof of Theorem 3.17. Observe that there is an obvious inclusion i : D∗ (△n) → V ∗(△n) induces a
map of E -algebras

fn : D∗ (△n)→ (V ⊗Ω)∗
(△n)

x 7→ i (x)⊗1

and, we also have a homotopy equivalence

gn :Ω∗ (△n)→ (V ⊗Ω)∗
(△n)

x 7→ 1⊗x

These maps are both compatible with the simplicial structure on the cochain algebras. For all
X ∈ sSet, this extends to a zig-zag of E -algebras by the universal property of simplicial sets

D∗ (X )
f−→ (V ⊗Ω)∗ (X )

g←−Ω∗ (X ) .

and by Proposition 3.20, these maps are quasi-isomorphisms.
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4 Homotopy invariants

In this section we shall discuss some applications of the p-adic de Rham forms. First, we shall
show that they recover the Massey products. Recall that Massey products, first defined in [19] and
extensively studied in [5], are secondary operations defined on the homology of differential graded
associative algebras. They are a finer invariant than the cohomology ring. For example, they can be
used to show that the Borromean rings are non-trivially linked, which cannot be detected using
only the cohomological cup product. We shall also discuss the relationship betweenQ-formality
and Ẑp -formality.

4.1 Massey products inΩ∗ (X )

This section discuss the homotopical applications of Ω∗ (X ). We shall show that that it allow us
to use the machinery of Massey products in situations where they were previously unavailable,
for example, in the torsion part of the cohomology of spaces. We finish this section by giving an
example of a space X that is formal overQ but not over Ẑp .

We begin by showing that all traditional Massey products in APL (X ) (that is to say, Massey
products in the sense of [19] that are defined overQ) may also be computed using Ω∗ (X ) .

Proposition 4.1. Suppose that σ ∈ H∗ (X ,Q) be the higher Massey product of 〈x1, x2, . . . , xn〉 ∈
H∗ (APL (X ) ,Q). Then there exists an n > 0 such that pnσ ∈ H∗ (

X , Ẑp
)

is the higher Massey product
of 〈pn x1, pn x2, . . . , pn xn〉 ∈ H∗ (

APL (X ) , Ẑp
)

computed in Ω∗ (X ) .

Proof. Let {ai , j } be a defining system for a Massey product in APL (X ). The inclusion

Ẑp〈x〉→Qp [x]

induces an inclusion of Ẑp -modules

f :Ω∗ (X ) ,→ APL (X )⊗Qp .

given by

xi1 · · ·xin d x j1 ∧·· ·∧d x jm 7→ 1

pn+m yi1 · · · yin d y j1 ∧·· ·∧d y jm .

Now for a sufficiently large n, the defining system {pn ai , j } must lie in the image of f . Since f is
injective, it then can be pulled back to a defining system for pnσ on Ω∗ (X ) .

One can generalise the notion of Massey products with the same definition but choosing
cochains representing the torsion part of the cohomology of a space. This has already been done
in some special cases. For an example with moment-angle complexes we refer the reader to [14,
Example 3.21]. We expect that our construction generalises this, up to factor, and provides a
convenient model for doing computations.

4.2 Formality ofΩ∗ (X )

Recall that a space X is calledQ-formal if APL (X ) is quasi-isomorphic to the cohomology of X . We
shall say that X is Ẑp -formal, if Ω∗ (X ) is quasi-isomorphic to H∗ (X ) via a zig-zag of commutative
dg-algebras. Formality is an extremely useful property in rational homotopy theory, and we hope
that Ẑp -formality may have similar applications in future.

The main theorem of this section is the following, which is inspired by a conjecture of Mandell
[18].

Theorem 4.2. Let X be a finite simplicial set such that APL (X ) is formal overQ. For all but finitely
many primes, Ω∗ (X ) is formal over Ẑp as a dg-commutative dg-algebra.

Before proving this theorem, it will be convenient to introduce some notation and prove a useful
lemma.
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Definition 4.3. Let V and W be free dg-modules in Ẑp .We define the mixed symmetric algebra
MSym(V0,V1) to be the smallest free commutative dg-algebra containing both Sym(V ⊕W ) and
ΓSym(W ) .

Lemma 4.4. Let X be a simplicial set. Suppose that a cochain σ ∈Ω∗ (X ) is not a cocycle. Then there
exists a cocycle c such that (σ+ c)pn

is divisible by pn .

Proof. The noncocyles in Ω∗ (△n) are easily verified to be of the form σ+ c for c = 1,2. . . , p −1 ∈
Ω0 (△n). For the general case, observe that

Ω∗ (X ) = sSet
(
X•,Ω∗ (△n))

.

The result holds for each x ∈ X• so the result must hold in the general case.

Proof of Theorem 4.2. Before beginning the proof we briefly summarise the idea behind the proof.
One constructs a quasi-free, and therefore cofibrant, replacement of APL (X ) in the category of
C DG AQ via the step-by-step procedure of [10, Proposition 12.1]. At each step one constructs a
quasi-free resolution of Ω (X ) with a map to the cofibrant resolution. Finally; if APL (X ) is formal
there is a weak–equivalence from the cofibrant resolution of APL (X ) to its cohomology and one
shows that this extends to a map on the quasi-free resolution of Ω (X ) to its cohomology.

For all but finitely many primes the cohomology H∗ (
X , Ẑp

)
is torsion-free and therefore projec-

tive. Assume we are working at such a prime. In this case,

H∗ (
X , Ẑp

)⊗Ẑp
Qp = H∗ (

X ,Qp
)

Then, we recall that if APL (X ) is formal, then APL (X )⊗Qp is formal. Now, the inclusion

Ẑp〈x〉→Qp [x]

induces an isomorphism
Ẑp〈x〉⊗Ẑp

Qp
∼−→Qp [x].

and therefore one has a isomorphism

Ω∗ (X )⊗Ẑp
Qp = APL (X )⊗Qp .

given by

xi1 · · ·xin d x j1 ∧·· ·∧d x jm 7→ 1

pn+m yi1 · · · yin d y j1 ∧·· ·∧d y jm .

This isomorphism restricts to an inclusion of dg-Ẑp -modules

Ω∗ (X ) → APL (X )⊗Qp ,

which is clearly an quasi-isomorphism after tensoring by Qp . We shall commence by showing
that one can build compatible Sullivan-type models for APL (X )⊗Qp and Ω∗ (X ) as commutative
dg-algebras. Since H∗ (

X , Ẑp
)

is free and therefore projective, one has a quasi-isomorphism of
dg-Ẑp -modules

H∗ (
X , Ẑp

)→Ω∗ (X ) .

One can then choose a map H∗ (
X ,Qp

)→ APL (X )⊗Qp such that the following diagram commutes.

H∗ (
X , Ẑp

)
Ω∗ (X )

H∗ (
X ,Qp

)
APL (X )⊗Qp .

H∗(X ,i )
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Here, the map i : Ẑp →Qp is the usual inclusion of a ring into its field of fractions. Next, we follow
the next step of the classical procedure for building a Sullivan model by extending this to a map of
free commutative dg-Ẑp -algebras.

Sym
(
H∗ (

X , Ẑp
))

Ω∗ (X )

Sym
(
H∗ (

X ,Qp
))

APL (X )⊗Qp .

f0

g0

The reader should observe that ker H∗ (
f0

)⊗Qp = ker H∗ (
g0

)
since H∗ (

X , Ẑp
)

has zero differential.
Moreover, these kernels are free since we are working over a PID. Therefore, any basis of cocycles
W1 for ker H∗ (

f0
)

is such that W1 ⊗Qp is a basis for ker H∗ (
g0

)
. Therefore one can extend the

differential to
d : V1 = sW1 →W1 ⊂ Sym

(
H∗ (

X , Ẑp
))

d : V1 ⊗Qp = sV1 ⊗Qp →W1 ⊗Qp ⊂ Sym
(
H∗ (

X ,Qp
))

that kill all surplus cocycles. Now, observe that the map

f1 : V1 →Ω∗ (X )

is defined to be any choice of map such that the following diagram commutes

V1

W1 Ω∗ (X ) .

f1
d

f0

In particular, it follows from Lemma 4.4 that f1 can be chosen such that for all v ∈ V1, we have
pn | f1 (v)pn

. Define g1 = f1 ⊗Qp . By freeness, we can produce a commutative diagram

(
Sym

(
H∗ (

X , Ẑp
)⊕V1

)
,Ω

)
Ω∗ (X )

(
Sym

(
H∗ (

X ,Qp
)⊕V1 ⊗Qp

)
,Ω

)
APL (X )⊗Qp .

f1

g1

This, so far, is precisely as in [10, Proposition 12.1]. Now, we claim that the map

f1 : Sym
(
H∗ (

X , Ẑp
)⊕V1

)→Ω∗ (X )

extends uniquely to (
MSym

(
H∗ (

X , Ẑp
)

,V1
))→Ω∗ (X ) .

The existence of such an extension is equivalent to showing that for all v ∈V1, the element
(

f1 (v)
)pn

is divisible by pn . This is true since f1 (v) was chosen to satisfy the hypotheses of Lemma 4.4.

(
MSym

(
H∗ (

X , Ẑp
)

,V1
)

,d
)

Ω∗ (X )

(
Sym

(
H∗ (

X ,Qp
)⊕ (

V1 ⊗Qp
))

,d
)

APL (X )⊗Qp .

f1

g1

It is clear we can iterate this procedure provided that two conditions. Namely, we must show that, if

• the cohomology of MSym
(
V0,

⊕k
i=1 Vi

)
is torsion-free.

• the map MSym
(
V0,

⊕k
i=1 Vi

) fk−→ Sym
(⊕k

i=0 Vi ⊗Qp
)

is aQp -quasi-isomorphism
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for k = N −1, then the same pair of conditions hold for k = N . The first condition is clearly true for
our construction since, by assumption, the cohomology of Ω∗ (X ) is torsion-free. For the second
condition to hold, it suffices to observe that fN sends cocycles to cocycles because the divided
powers of the Vi for i ≥ 1 kill all surplus cocycles.

It therefore follows that the map(
MSym

(
V0,

∞⊕
i=1

Vi

)
,d

)
→

(
Sym

( ∞⊕
i=0

Vi ⊗Qp

)
,d

)

is aQp -quasi-isomorphism. Since
(
Sym

(⊕∞
i=0 Vi ⊗Qp

)
,d

)
is cofibrant, there is a quasi-isomorphism(

Sym
(⊕∞

i=0 Vi ⊗Qp
)

,d
)→ H∗ (

X ,Qp
)
. This restricts to a quasi-isomorphism of commutative dg-

algebras (
MSym

(
V0,

∞⊕
i=1

Vi

)
,d

)
→ H∗ (

X , Ẑp
)

which implies Ω∗ (X ) is formal as desired.

5 The best functorial approximation to commutative algebras

In general, the Ẑp -de Rham forms lose some information about the associative structure. In this
section, we provide an example showing that this is unavoidable. To do this, we show that there are
obstructions to strict commutativity in the E1-algebra structure of some spaces.

Proposition 5.1. Let A be an associative algebra with Ẑ2-coefficients. Suppose that there exist
a,b ∈ A such that the Massey product m(a,b, a) is non-vanishing with F2 -coefficents. Then A is not
weakly equivalent to a strictly commutative algebra.

Proof. Suppose A is weakly equivalent to a strictly commutative algebra C . Within C ⊗F2 one has

m(a,b, a) = u ∪a +a ∪u = 0

for some u such that du = a ∪b = b ∪a. Massey products are well-known to be invariant under
quasi-isomorphism, so m(a,b, a) = 0 in A as well. The conclusion follows.

Remark 5.2. The indeterminacy of this Massey product can be easily checked to be a ∪H |a|+|b|−1.

We can produce examples of spaces with such a Massey product. In order to do so, first observe
that, in an arbitrary E∞-algebra, one has

m(a,b, a) = u ∪a +a ∪ (u +a ∪1 b).

where we suppose du = a ∪b. Since d(u ∪1 a) = u ∪a +a ∪u + (a ∪b)∪1 a

u ∪a +a ∪ (u +a ∪1 b) = d(u ∪1 a)+a ∪ (a ∪1 b)+ (ab)∪1 a

By the Hirsch identity, one has (a ∪b)∪1 a = a ∪ (b ∪1 a)+ (a ∪1 a)∪b. So

d(u ∪1 a)+a ∪ (a ∪1 b)+ (ab)∪1 a = d(u ∪1 a)+a ∪ (a ∪1 b)+a ∪ (b ∪1 a)+ (a ∪1 a)∪b

Finally, one has d(a ∪1 a ∪1 b) = a ∪ (a ∪1 b)+a ∪ (b ∪1 a). So, finally, one has obtained

m(a,b, a) = d(u ∪1 a)+d(a ∪1 a ∪1 b)+ (a ∪1 a)∪b.

In cohomology, the element (a∪1 a)∪b is precisely Sq|a|−1(a)∪b. So, in conclusion, we have shown
that Sq|a|−1(a)∪b is a value of m(a,b, a).

We construct an example of a space with a non-vanishing Massey product of the form m(a,b, a).
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Example 5.3. Let a be the generator of H(K (F2,3) and b be the generator of H(K (F2,2)). Let X
be the homotopy fibre of the map K (F2,3)×K (F2,2) → K (F2,5) induced by the element a ∪b ∈
H 5 (K (F2,3)×K (F2,2)). We can compute the cohomology ring of X using the fibration

Ω (K (F2,5)) ,→ X ↠K (F2,3)×K (F2,2).

where we have used the standard argument that the iterated fibre is the loop space of the base
space. By the previous discussion, to show that it suffices to show that:

a) the element Sq2(a)∪b is nonvanishing in cohomology.

b) the element Sq2(a)∪b is not contained in aH 4 (X ).

To start, we run a Serre spectral sequence on the above fibration, which tells us that

E p,q
2 = H p (

K (F2,3)×K (F2,2), H q (K (F2,4))
)⇒ H p+q (X ) .

In the above, we have used the identification Ω(K (F2,5)) ∼= K (F2,4). The cohomology of K (F2,4) is
the free Steenrod algebra on one generatorσ and, by the Kunneth theorem and since we are working
over the field F2, the cohomology of K (F2,3)×K (F2,2) is the tensor product of two free Steenrod
algebras each on one generator. We have that Sq2(a)∪b ∈ E 7,0

2 , therefore to prove Sq2(a)∪b is

nonvanishing in cohomology, it therefore suffices to show that E 7,0
2 it is not hit by any of the higher

differentials. It is easy to check that E p,1
2 = E p,2

2 = E p,3
2 = 0. So, the first differential that could hit

E 7,0 is d5. Indeed d5(b) hits E 7,0
2 , but this must kill a ∪b ∪b. We have that E 1,5

6 = E 1,5
2 = 0, so d6

does not affect E 7,0. Finally, we have d7. The domain is E 6,0
7 = H 6(K (F2,4)) = F⊕2

2 . The generators
are Sq2(σ) and Sq1 Sq1(σ). It is straightforward to determine that these are sent to Sq2(a ∪b) and
Sq1 Sq1(a ∪b).

Having computed E 7,0
2 , we note that this satisfies only the Adem and Cartan relations. The only

relation that applies to Sq2 a ∪b is

Sq2 a ∪b +Sq1 a ∪Sq1 b +a ∪Sq2 b = Sq2(a ∪b) = 0

Thus we can conclude that Sq2 a ∪b ∉ aH 4(X ). Therefore, the product m(a,b, a) is non-vanishing.
It follows from Proposition 5.1 that the E1-structure on X cannot be rectified.
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[14] J. Grbić and A. Linton. Non-trivial higher Massey products in moment-angle complexes. Adv.
Math., 387:Paper No. 107837, 52, 2021.

[15] V. Hinich. Virtual operad algebras and realization of homotopy types. J. Pure Appl. Algebra,
159(2-3):173–185, 2001.

[16] J.-L. Loday and B. Vallette. Algebraic operads, volume 346 of Grundlehren der mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg,
2012.

[17] M. Mandell. Cochain multiplications. Amer. J. Math., 124(3):547–566, 2002.

[18] M. Mandell. Towards formality. mmandell.pages.iu.edu/talks/Austin3.pdf, 2009.

[19] W. S. Massey. Some higher order cohomology operations. In Symposium internacional de
topología algebraica International symposium on algebraic topology, pages 145–154. Universi-
dad Nacional Autónoma de México and UNESCO, México, 1958.

[20] D. Quillen. Rational homotopy theory. Ann. of Math. (2), 90:205–295, 1969.

[21] D. Sullivan. Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math.,
(47):269–331 (1978), 1977.

[22] D. White. Model structures on commutative monoids in general model categories. J. Pure
Appl. Algebra, 221(12):3124–3168, 2017.

OISÍN FLYNN-CONNOLLY

LEIDEN UNIVERSITY

THE NETHERLANDS

flynncoo@tcd.ie

22

mmandell.pages.iu.edu/talks/Austin3.pdf

	Introduction
	Preliminaries
	E-algebras and Steenrod operations
	Rational homotopy theory
	Sullivan's approach to rational homotopy theory
	Comparison between de Rham forms and singular cochains
	Rectification
	Cartan's approach to cochain algebras

	Algebras over an operad over a ring of positive characteristic
	The homotopy theory of E-algebras and commutative dg-algebras
	The case of E algebras
	The case of commutative dg-algebras


	The de Rham forms over  
	The algebra of p-adic de Rham forms
	Some examples

	The cohomology of *(X)
	The relationship between the p-adic de Rham forms and the algebra of singular cochains
	The p-shifted singular cochains
	The equivalence


	Homotopy invariants
	Massey products in *(X)
	Formality of *(X)

	The best functorial approximation to commutative algebras

