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ABSTRACT. In recent work of Moreno-Fernandez, Wierstra and the author, a coendomorphism operad in
the category of pointed topological spaces endowed with the wedge sum was introduced. In this paper,
we construct an analogue completely internal to the category of simplicial sets with the goal of defining
simplicial coalgebras. As an application, we show that simplicial n-fold suspensions are coalgebras up to
coherent homotopy over the Barratt–Eccles En -operad.

1. INTRODUCTION

The little n-cubes operad Dn was first introduced by J. P. May in his 1972 book The Geometry of
Iterated Loop Spaces [9], although earlier similar notions appear in the work of Stasheff and Boardman-
Vogt. He had noticed that n-fold loop spaces carry a natural monoidal (up to homotopy) structure
induced by concatenation of loops. He invented operads in order to capture this underlying structure
without reference to the space itself. This approach proved its utility immediately, when he was able
to show that any simply connected algebra over Dn is weakly homotopic to an n-fold loop space, a
famous result known as May’s recognition principle.

This enables the systematic development of cohomology operations on iterated loop spaces. For
example, it can be shown that the homology of the little n-discs operad is the parameterized Poisson
operad Poisn in chain complexes [3]. This immediately implies that the homology of n-fold loop
spaces possesses not just the Pontryagin product induced by the concatenation of loops, but also a
binary product of degree 1−n called the Browder bracket which is compatible with the concatenation
of loops in the sense that the Gerstanhaber relation holds. Integral operations such as the Dyer-Lashof
and Kudo-Araki operations arise in this framework as well [5].

Eckmann-Hilton duality suggests that iterated suspensions should possess a parallel theory support-
ing the development of homotopy operations. Moreno-Fernandez, Wierstra, together [10] and with the
present author [6] have started the development of such a theory. For each pointed topological space
X , we define the coendomorphism operad CoEnd(X ). One defines an operad with arity n component

CoEndTop :=Top∗(X , X ∨n).

Given an operad P , a P-coalgebra is defined to be a pair (X ,φ) where X is a space andφ is an operadic
morphism P →CoEnd(X ). An analogue of May’s recognition principle holds: the Dn-coalgebras are,
up to homotopy, precisely the n-fold suspensions.

So far, this theory has been developed in topological spaces. However, modern homotopy theory is
most effectively phrased in simplicial terms, and one would like a tractable theory of combinatorial
coendomorphism operads and coalgebras internal to Set△ to provide a more convenient context
for studying homotopy operations. The theory does not extend as naively as one might hope, as
the wedge sum of Kan complexes is not necessarily a Kan complex. As a consequence of this, the
obvious choice, the operad defined in arity n by Set△(X , X ∨n) is not the same as Top∗(X , X ∨n) in the
common homotopy category of topological spaces and simplicial sets. For example, the simplicial
set Set△

(
S1, (S1)∨n

)
contains n disjoint points, one for each copy of S1 in the wedge sum. In contrast,

π0
(
Top(S1, (S1)∨n)

)
is the amalgamated product Z∗n since it includes the pinch map S1 → S1 ∨S1.

There are two approaches to obtaining a valid coendomorphism operad in the category of simplicial
sets.
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(1) One can pass from X to |X |, form CoEndTop(|X |), and return to simplicial sets via Sing•. This
produces a very geometrically transparent operad, but it is very large, typically uncountable
even for finite X . Crucially it is not purely combinatorial or internal to Set△.

(2) By applying Kan’s Ex∞ functor, one obtains a coendomorphism operad CoEndSet△(X ). The
advantages of CoEndSet△(X ) directly mirror those of the Ex∞ functor itself: it is functorial,
combinatorially tractable, and remains entirely internal to Set△, while still preserving the
correct homotopical behavior.

We briefly remark that one cannot produce a coendomorphism operad dually by subdividing directly
as the Ex∞-functor does not have a left adjoint sd∞, although each finite stage Exn does. The main
contribution of this paper is the definition of CoEndSet△(X ) and the proof that it is indeed an operad.
For convenience, we state this as a theorem.

Theorem A. The coendomorphism operad CoEndSet△(X ) is an operad in simplicial sets.

We then show that the two constructions above agree up to homotopy. This justifies that our model
is the correct one to simplicially model the topological coendomorphism operad.

Theorem B. For finite simplicial sets X , the coendomorphism operads Sing•
(
CoEndTop(X )

)
and

CoEndSet△(X ) listed above are weakly equivalent.

Finally, this framework permits a definition of coalgebras internal to simplicial sets. Using model-
categorical arguments, we establish the following.

Theorem C. Let X be a finite simplicial set, then the n-fold simplicial suspensionΣn X has the structure
of an En-coalgebra.

Notation and conventions. All topological spaces are compactly generated and Hausdorff. We will
refer to the monoidal category of such spaces equipped with the Kelley product as Top. The symmetric
group on n letters is denoted Sn . Our references are as follows: for operads [8]; simplicial sets [7]; for
the definition of simplicial suspensions and wedge sums [4]; for the Barratt-Eccles operad [1]; for the
Boardman-Vogt resolution (the W -construction) of operads [2].

The structure of this article. This paper has the following structure. First we recall some preliminaries
on topological coalgebras and Kan’s Ex∞-functor. Section 3 contains our main results: we construct a
coendomorphism operad in simplicial sets. We conclude by proving that simplicial suspensions are
En-coalgebras.

Acknowledgements: The author thanks Felix Wierstra for useful discussions and guidance.

2. PRELIMINARIES

In this section, we collect some of the prerequisites for understanding this paper. First we recall the
theory of coalgebras in topological spaces. Then we describe Kan’s Ex∞-functor, a fibrant replacement
functor in the Quillen model category of simplicial sets.

2.1. Coalgebras in topological spaces. In [6, Definition 2.14], the authors show that one can define a
coalgebra over an operad in pointed topological spaces. There is a similar, but not equivalent, notion
in the category of vector spaces over a fixed field given in [8, Subsection 5.2.17]. We summarise this
below.

Definition 2.1. Let X be a pointed topological space. The topological coendomorphism operad
CoEndTop(X ) has arity r component

CoEndTop(X )(r ) :=Top∗(X , X ∨r )

For r = 0, set CoEndTop(X )(0) =Top∗(X ,∗) =∗. The operadic composition maps are defined by

γ :CoEndTop(X )(r )⊗CoEndTop(X )(n1)⊗·· ·⊗CoEndTop(X )(nr ) →CoEndTop(X )(n1 +·· ·+nr )

( f , f1, · · · , fr ) 7→ ( f1 ∨·· ·∨ fr )◦ f .

The symmetric group action permutes the wedge factors in the output.
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Remark 2.2. Note that CoEndTop(X ) is naturally pointed. We will normally choose to ignore this extra
structure, and will regard CoEndTop(X ) as unpointed for the rest of this report.

This immediately allows us to define a coalgebra as an algebra over the coendomorphism operad.

Definition 2.3. Let P be an (unpointed) operad in the category of topological spaces. A P-coalgebra
is a pointed space X along with an (unpointed) morphism of operads

∆ : P →CoEndTop(X )

In this framework, one can prove the following result.

Theorem 2.4. [6, Theorem 2.1] Let Σn X be the n-fold suspension of a pointed space X . Then there is a
natural map of operads

∆ :Dn →CoEndTop(Σn X )

which encodes the homotopy coassociativity and homotopy cocommutativity of the pinch map. Other-
wise said, n-fold suspensions are coalgebras over the little n-discs operad. Furthermore, for any based
map X → Y , the induced map Σn X →ΣnY extends to a morphism of Dn-coalgebras.

2.2. Kan’s Ex∞ functor. Not all objects are fibrant in the classical Quillen model structure on the
category of simplicial sets. Kan introduced the fibrant replacement functor Ex∞ which computes
replacements via the combinatorial process of barycentric subdivision. For more details, we refer the
reader to [7, Chapter III].

Definition 2.5. Recall that the nondegenerate simplices of the standard n-simplex △n are exactly the
increasing injections [m] → [n] with 0 ≤ m ≤ n. These are in one-to-one correspondence with the
subsets of {0,1, . . . ,n} of cardinality m+1 and thus form a poset under inclusion which we denote P△n .
We define the simplical subdivision of △n to be

sd△n :=N (P△n)

where N is the nerve of the poset (regarded as a small category with morphisms given by inclusions).

Lemma 2.6. [7, Lemma III.4.1] On the level of geometric realizations, there is a homeomorphism
f : |sd△n | ∼−→ |△n |.

The notion of subdivision can be extended to any simplicial set, not just the standard simplices.
This extension makes use of the notion of a simplex category, which we shall introduce next.

Definition 2.7. The simplex category △↓ X of a simplicial set X , has for objects all simplicial maps
σ : △n → X and has for morphisms, the commutative diagrams of the form

△n X

△m

σ

θ∗
τ

where θ∗ is induced by a unique ordinal map θ : [m] → [n].

Definition 2.8. Let X be a simplicial set. The subdivision sd X of X is defined to be the simplicial set

sd X = lim△n→X sd△n

with the limit indexed by the simplex category of X .

Definition 2.9. Let X be a simplicial set. There is a natural map ν△n : sd△n →△n induced by the map
of posets P△n → [n] given by

[v0, v1, . . . , vk ] 7→ vk .

The last vertex map νX : sd X → X is
νX = lim△n→X ν△n

with the limit indexed by the simplex category of X .

We define the Ex functor to be the right adjoint of the sd functor.
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Definition 2.10. For any simplicial set X we define

Ex(X )n := Set△(sd△n , X )

Definition 2.11. We have a morphism µX : X → Ex(X ) which is adjoint to the last vertex map. Thus we
obtain a diagram

X Ex(X ) Ex2(X ) · · ·
The colimit of this diagram is denoted Ex∞(X ).

The key properties of the Ex∞-functor are as follows.

Theorem 2.12. [7, Theorem 4.8] Let X be a simplicial set. Then:

(1) Ex∞(X) is a Kan complex.
(2) The canonical map ηX : X → Ex∞(X ) is an injective weak homotopy equivalence.
(3) Ex∞ preserves Kan fibrations.
(4) Ex∞ preserves finite limits.

3. COALGEBRAS IN SIMPLICIAL SETS

This section contains the main result of this article. We shall first construct the simplicial coen-
domorphism operad, then show that it has the correct cohomology type and finally generalise [6,
Proposition 2.23], and that n-fold suspensions are coalgebras are coalgebras up to coherent homotopy
over the Barratt-Eccles operad.

3.1. The simplicial coendomorphism operad. In this section, we wish to extend the notion of coalge-
bras to the category of simplicial sets. As in topological spaces [6], we are going to do this by defining
the notion of a coendomorphism operad. As discussed in the introduction, the operad defined in arity
n by Set△(X , X ∨n) does not have the correct homotopy type due to X ∨n not being a Kan complex even
when X is.

This hints at the underlying problem. As we have seen throughout this report, not all simplicial sets
are Kan complexes. Thus, not all maps in the homotopy category exist between all pairs of objects in
the model. To ensure that they do we must take a fibrant replacement of X ∨n . To ensure things remain
as combinatorially tractable as possible, we shall use Kan’s Ex∞ functor for this task. The underlying
S-module of the desired operad is very easy to describe and we can do this immediately.

Definition 3.1. We define the simplicial coendomorphism S-module in arity r to be

CoEndSet△(X )(r ) := Set△(X ,Ex∞(X ∨r )).

Each σ ∈Sr induces a map σ∗ : X ∨r → X ∨r , by permutation of the factors of the wedge sum. Then the
symmetric action of the S-module is given by the maps

−∗σ : CoEndSet△(X )(r ) → CoEndSet△(X )(r )

f 7→σ∗ ◦ f .

Remark 3.2. It is obvious that −∗σ is a bona fide simplicial map because the degeneracy and face
maps of the simplicial mapping space act only on the domain of a n-simplex f : X ×△m → Ex∞(X ∨r )
and not on the codomain.

The next few pages consist of defining the operadic composition maps. We start by recalling some
notation.

Observation 3.3. Recall from Section 1 that Ex∞(X ) is defined as the colimit of the following chain of
injective weak homotopy equivalences

X
∼−→ Ex(X )

∼−→ Ex2(X )
∼−→ ·· · ∼−→ Exi (X )

∼−→ ·· ·
This implies that for all x ∈ Ex∞(X ) there exists an N > 0 such that x ∈ Exn(X ) for all n > N . Of course,
we are implicitly identifying each Exn(X ) with its image in Ex∞(X ), where they form an exhaustive
filtration.
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Definition 3.4. Let X be a simplicial set with only finitely many non-degenerate simplices, and let f
be an n-simplex of CoEndSet△(X )(r ). In other words,

f ∈ Set△(X ,Ex∞(X ∨r ))n .

By the definition of simplicial mapping sets, f is a simplicial function X ×△m → Ex∞(X ∨r ). Following
Observation 3.3, we can associate an integer Nσ to every simplex σ ∈ X ×△m ; this being the smallest
N such that f (σ) ∈ ExN (X ∨r ). We define N f to be the integer max{Nσ}σ∈X×△m .

Remark 3.5. The integer N f is well-defined because X ×△m , the domain of f , has only finitely many
non-degenerate simplices.

Remark 3.6. It is easy to check the following three properties of N f .

• f factors through ExN f (X ∨r ).
• N f is the smallest integer with this property.
• For all N ≥ N f , f factors through ExN (X ∨r ).

Our definition of the coendomorphism operad will make heavy use of the adjunction between Ex
and sd. For ease of reading, we shall introduce two pieces of helpful notation.

Notation 3.7. Let f ∈ Set△(sdN (X×△m), (X ∨r )) for N > 0. This is adjoint to f c ∈ Set△((X×△m),Exm(X ∨r )).
Now f c uniquely extends to an element of Set△((X ×△m),Ex∞(X ∨r )) which is the same thing as
Set△(X ,Ex∞(X ∨r ))n . We shall denote this element as f .

Notation 3.8. Let f ∈ Set△(X ,Ex∞(X ∨r ))m . Then it follows from Remark 3.5 that for all N ≥ N f , there

is a unique element, which we shall denote ( f , N ), of Set△(sdN (X ×△m), X ∨r ), such that ( f , N ) = f .

Having concluded the preliminaries we are now in a position to define the composition maps.
Observe that as the subdivision functor is a left adjoint, it preserves colimits. In particular, it commutes
with wedge sums.

Definition 3.9. Let f ∈ CoEndSet△(X )(r )m and fi ∈ CoEndSet△(X )(ni )m for 1 ≤ i ≤ r . We define the
composition map

γ : CoEndSet△(X )(r )×CoEndSet△(X )(n1)×·· ·CoEndSet△(X )(nr ) → CoEndSet△(X )(n1 +·· ·+nr )

to be F where F is the map

F : sdN+N f (X ×△m)
δ

sd
N f (X×△m )−−−−−−−−→ sdN (sdN f (X ×△m)× sdN f (X ×△m))

sdN (id×sdN f (π2))−−−−−−−−−−−−→ sdN (sdN f (X ×△m)× sdN f (△m))
a−→ sdN (sdN f (X ×△m)×△m)

( f ,N f )−−−−→ sdN (X ∨r ×△m))
b−→ sdN (X ×△m)∨r ( f1,N )∨···∨( fr ,N )−−−−−−−−−−−→ X ∨n1+···nr

where:

• N is the integer max(N f1 , . . . , N fr );

• δsdN f (X×△m ) : sdN f (X ×△m) → sdN f (X ×△m)× sdN f (X ×△m) is the diagonal map;
• π2 : X ×△m →△m is the projection;

• a : sdN f (△m)) → sdN (sdN f (X ×△m)×△m) is the map sdN (id×ν(N f )
△m ) where ν

(N f )
△m := ν△m ◦ · · · ◦

νsdN f −1 △m and νZ : sd Z → Z is the last vertex map;
• b is an isomorphism, as × is distributive over the wedge sum, and the wedge sum commutes

with subdivision.

We need to check that the definition above gives rise to well-defined operad. We phrase this result
as a theorem.

Theorem 3.10. Let X be a simplicial set with finitely many non-degenerate simplices. Then the compo-
sition maps of Definition 3.9 induce an operad structure on the S-module CoEndSet△(X ).

Before proving this theorem, we wish to make two useful remarks and introduce a final piece of
notation.
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Remark 3.11. Our first remark concerns the relationship between ( f , N ) and ( f , M) for M > N ≥
N f . From the definition of Ex we see that, for all simplicial sets Z and Z ′, the simplicial morphism
Set△(νZ , Z ′) is adjoint to Set△(Z ,µZ ′), where both

µZ : Z → Ex(Z ).

νZ : sd Z → Z .

are the maps induced by the last vertex map. Thus we have the relation

( f , N )◦νsdN (X×△m ) = ( f , N +1).

for all N ≥ N f and its obvious extension by induction. A second useful well-known result about νZ is
that the following diagram commutes

(1)
sd Z Z

sd Z ′ Z ′.

sd f

νZ

f

νZ ′

Notation 3.12. We define ν(k)
Z := νZ ◦ · · · ◦νsdk−1 Z .

Remark 3.13. Another useful thing is to note that we can replace N f in the definition of F with any
integer K ≥ N f , and F will not change. To see why, call this new map F (K ), and then observe, with the

help of Diagram 1, that F (K ) = F ◦ν(K−N f )

sdN f (X×△m )
. By our previous remark

F ◦ν(K−N f )

sdN f (X×△m )
= F .

Similarly, if we replace N in the definition with a larger integer K ′, the function F in Definition 3.9
will become another function which we will call F (K ′). It once again follows from Remark 3.11 and
Diagram 1 that this function will be related to F by the identity

f (K ′) = F ◦ν(K ′−N )
Z ,

and so we can also replace N with any larger integer in Definition 3.9 without changing the operad
structure.

Theorem 3.10. We need to verify that this defines an operad, starting with the associativity axiom. So
we wish to show that

γ(γ( f , f1, . . . , fr ), f1,1, . . . , fr,nr ) = γ( f ,γ( f1, f1,1, . . . f1,n1 ), . . . ,γ( fr , fr,1, . . . fr,nr ))

for all f ∈ CoEndSet△(X )(r )m , fi ∈ CoEndSet△(X )(ni )m and fi , j ∈ CoEndSet△(X )(ni , j )m . Expanding the
left hand side of this we obtain

(2) (
r∨

i=1

ri∨
j=1

( fi j , M))◦ (
r∨

k=1
sdM (( fk , M ′)×ν(M ′)

△m ◦ sdM ′
(π2)))◦ sdM+M ′

(( f , N f )× (ν
(N f )
△m ◦ sdN f (π2)))

where M = max{N fi j }1≤i≤r,1≤ j≤ri and M ′ = max{N fi }1≤i≤r . Now let Mi = max{N fi , j }0≤ j≤ni and recall
that

( f , M) = ( f , Mi )◦ν(M−Mi )
sdM (X×△m )

We may deduce from this that Expression (2) can be written

(
r∨

i=1

ri∨
j=1

( fi j , Mi )◦ν(M−Mi )
sdMi (X×△m )

)◦ (
r∨

k=1
sdM (( fk , M ′)×ν(M ′)

△m ◦ sdM ′
(π2)))

◦sdM+M ′
(( f , N f )× (ν

(N f )
△m ◦ sdN f (π2))).

This can be written

(
r∨

i=1

ri∨
j=1

( fi j , Mi ))◦ (
r∨

k=1
ν

(M−Mk )
sdM (X ∨rk ×△m )

◦ sdM (( fk , M ′)×ν(M ′)
△m ◦ sdM ′

(π2)))

◦sdM+M ′
(( f , N f )× (ν

(N f )
△m ◦ sdN f (π2))).
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Using the commutativity of Diagram 1 we see that this is equal to

(
r∨

i=1

ri∨
j=1

( fi j , Mi ))◦ (
r∨

k=1
sdMk (( fk , M ′)×ν(M ′)

△m ◦ sdM ′
(π2))◦νM−Mk

sdM ′+Mk (X×△m )
)

◦sdM+M ′
(( f , N f )× (ν

(N f )
△m ◦ sdN f (π2))).

Once again using Diagram 1, we can rewrite this as

(
r∨

i=1
(

ri∨
j=1

( fi j , Mi ))◦ sdMi (( fi , M fi )× (ν
(M fi )
△m ◦ sdM fi (π2)))◦νM+M ′−Mi−M fi

sdM ′+Mi (X×△m )
)

◦sdM+M ′
(( f , N f )× (ν

(N f )
△m ◦ sdN f (π2))).

The above expression is equal to
r∨

i=1
(γ( fi , fi 1, . . . , fi ri )), M +M ′)◦ sdM+M ′

(( f , N f )× (ν
(N f )

sdM+M ′
(△m )

◦ sdN f (π2))).

By our argument on the last page, this is equal to

γ( f ,γ( f1, f1,1, . . . f1,n1 ) . . . ,γ( f1, fr,1, . . . fr,nr ))

as desired.
The identity element of the operad is µX : X → Ex∞(X ). Verifying the equivariance axioms is straight-

forward, it is almost exactly the same as verifying them for the topological coendomorphism operad.
Therefore we have defined an operad. □

It remains only to define simplicial coalgebras, which proceeds exactly as one would expect.

Definition 3.14. Let P be an operad in simplicial sets. We shall say that a finite simplicial set X is a
P-coalgebra if there exists an operadic morphismΦ : P →CoEndSet△(X ).

Lastly we define En-algebras in Set△ . The W -construction of an operad in simplicial sets is defined
in [2].

Definition 3.15. In simplicial sets, an En-coalgebra is a coalgebra over the W -construction of the
Barratt-Eccles En-operad.

3.2. Simplicial suspensions are En-coalgebras. In this section, in direct analogy with [6, Theorem
2.22] in topological spaces, we aim to show that simplicial suspensions are En-coalgebras. The strategy
of this proof is as follows. First we transfer the little n-discs operad Dn , the topological coendomor-
phism operad and the operad morphismΦ between them into the category of simplicial sets using the
simplicial chains functor Sing•. We then use the homotopy transfer principle to lift this to a morphism
from a cofibrant replacement of Dn to the simplicial coendomorphism operad.

The precise statement of the simplicial version of Theorem 2.4 is as follows.

Theorem 3.16. Let n ∈N and Σn X be the n–fold suspension of a finite pointed simplicial set X . Then
Σn X has the structure of an En-coalgebra.

Our proof of this theorem requires that the Cartesian product commutes with the geometric realiza-
tion functor. This is actually not true in general. Therefore, we shall need to restrict from the category
of all topological spaces to the category of compactly generated Hausdorff spaces and we take our
product to be the Kelley product.

We also wish to be able to transfer operads from topological space to simplicial sets. This is made
possible by the following definition.

Definition 3.17. Let P be an operad in Top. We define an operad Sing•P over Set△ with arity n
component

(Sing•P )(n) := Sing•(P (n))

where Sing• is the singular chains functor. The action of σ ∈Sn on Sing•P (n) is given by Sing•P (n)∗
σ := Sing•(P (n)∗σ). The operadic composition map is γSing•P := Sing•(γP ) and we take the unit to
be the simplex [△0 → 1Top] ∈ Sing•P (1).
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Remark 3.18. The operad composition map in the definition above is well-defined because Sing•
is right adjoint to the geometric realization. This implies that it preserves limits, and in particular,
products.

We can actually define Sing•(CoEndTop(|X |)) to be an alternative coendomorphism operad. The
following theorem gives us a precise description of it.

Lemma 3.19. Let X be a simplicial set with only finitely many nondegenerate simplices. The operad
Sing•(CoEndTop(|X |)) is isomorphic to the simplicial operad Q(X ) with arity r component equal to

Q(X )(r ) := Set△(X ,Sing•|X ∨r |).

Let f ∈Q(X )(r )m and let fi ∈Q(X )(ni )m for 1 ≤ i ≤ r . The operadic composition map

γ : Q(X )(r )×Q(X )(n1)×·· ·×Q(X )(nr ) →Q(X )(n1 +·· ·+nr )

is given by the adjoint under the Top-Set△ adjunction of F : |X ×△m |→ |X ∨n1+···+nr |, where F is defined
by

|X ×△m | | id×δ△m |−−−−−−→ |X ×△m ×△m | a−→ |X ×△m |× |△m | | f |×id−−−−→ |Sing•|X ∨r ||× |△m | ϵX∨r ×id−−−−−→

|X ∨r |× |△m | b−→ |X ×△m |∨r
∨r

i=1 | fi |−−−−−→
r∨

i=1
|Sing•|X ∨ni ||

∨r
i=1 ϵX∨ni−−−−−−−→

r∨
i=1

|X ∨ni | c−→ |X ∨n1+···+nr |

where

• δ△m : △m →△m ×△m is the diagonal map.
• for Y a topological space, the map ϵY : |Sing•(Y )|→ Y is the counit of the adjunction between

topological spaces and simplicial sets.
• a : |X ×△m ×△m |→ |X ×△m |× |△m | is an isomorphism, as × commutes with geometric reali-

sation.
• b : |X ∨r |× |△m |→ |X ×△m |∨r is an isomorphism, as both × and the wedge sum commute with

geometric realisation.
• c :

∨r
i=1 |X ∨ni |→ |X ∨n1+···+nr | is an isomorphism, as the wedge sum commutes with geometric

realisation.

For each σ ∈Sr , there is a map σ∗ : X ∨r → X ∨r given by permuting the terms of the wedge sum by σ.
The symmetric structure on Q(X )(r ) is defined by post-composition with the morphism Sing•|σ∗|.
Proof. We can write

Sing•(CoEndTop(|X |))(r ) = Sing• MapTop(|X |, |X ∨r |) ∼= Set△(X ,Sing•|X ∨k |).

because, for all K ∈ Set△ and Y ∈Top, we have

Top(|△m |,MapTop(|K |,Y )) ∼=Top(|△m |× |K |,Y )

by tensor-hom adjunction. Here it is critical to distinguish between the simplicial mapping space and
the hom-set. We then have

Top(|△m |× |K |,Y ) ∼=Top(|△m ×K |,Y )

by the identity |X |× |Y | ∼= |X ×Y | and finally we have

Top(|△m ×K |,Y ) ∼= Set△(△m ×K ,Sing•Y )

by adjunction.
Secondly, it remains to check that operad morphisms are as described in the statement of the

lemma. We can describe the induced operad structure on Top(|△m × X |, |X ∨r |) quite easily. For
f ∈Top(|△m ×X |, |X ∨r |) and fi ∈Top(|△m ×X |, |X ∨ni |) the composite γ( f , f1, . . . fn) is the function

F : |X ×△m | | id×δ△m |−−−−−−→ |X ×△m ×△m | a−→ |X ×△m |× |△m | f ×id−−−→

|X ∨r |× |△m | b−→ |X ×△m |∨r
∨r

i=1 fi−−−−→
r∨

i=1
|X ∨ni | c−→ |X ∨n1+···+nr |

The isomorphism
G : Set△(△m ×X ,Sing•|X ∨r |) ∼−→Top(|△m ×X |, |X ∨r |)
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can be written by
f 7→ ϵX ∨r ◦ | f |.

Therefore the composition map is exactly as described. □

The simplicial coendomorphism operad and the operad Sing•(CoEndTop(|X |)) are equivalent.

Theorem 3.20. Let X be a finite simplicial set. Then the simplicial coendomorphism operad and the
operad Sing•(CoEndTop(|X |)) are weakly equivalent.

It follows from this that the simplicial coendomorphism operad is isomorphic to the topological
coendomorphism operad in common homotopy category of topological spaces and simplicial sets.

We shall prove this by constructing a zig-zig involving a third operad, which we define will first.

Definition 3.21. Let X be a finite simplicial set. Then the mixed coendomorphism operad R(X ) has
arity r component

R(X )(r ) = Set△(X ,Ex∞(Sing•|X ∨r |)).

For each σ ∈Sr , there is a map σ∗ : X ∨ → X ∨ given by permuting the terms of the wedge sum by σ. The
symmetric structure on R(X )(r ) is defined by post-composition with the morphism Ex∞(Sing•|σ∗|). We
shall define the operadic composition map using both the sd–Ex and the simplicial chains-geometric
realization adjunctions consecutively. Let f ∈ Q(X )(r )m and fi ∈ Q(X )(ni )m for 1 ≤ i ≤ r , then the
operadic composition map

γ : R(X )(r )×R(X )(n1)×·· ·×R(X )(nr ) → R(X )(n1 +·· ·+nr )

is defined to be F which is adjoint, under the sd-Ex adjunction, of the morphism, F : sdN f (X ×△m) →
Sing•|X ∨n1+···+nr |. F is itself an adjoint, this time under the geometric realization –simplicial chains
adjunction, of a morphism G : |sdN+N f (X ×△m)|→ |X ∨n1+···+nr | which we define to be the composite

|sdN+N f (X ×△m)| |sdN (δ△m )|−−−−−−−→ |sdN (sdN f (X ×△m)× sdN f (X ×△m))|
|sdN (id×sdN f (π2))|−−−−−−−−−−−−−→ |sdN (sdN f (X ×△m)× sdN f (△m))| a−→ |sdN (sdN f (X ×△m)×△m)|

sdN (( f ,N f )×id)−−−−−−−−−−→ |sdN (Sing•|X ∨r |×△m)| b−→ |Sing•|X ∨r |×△m | c−→ |X ∨r ×△m |
d−→ |sdN (X ∨r ×△m)| e−→ |sdN (X ∨r ×△m)|∨r

∨r
i=1 | fi |−−−−−→

r∨
i=1

|Sing•|X ∨ni ||
∨r

i=1 ϵX∨ni−−−−−−−→
r∨

i=1
|X ∨ni |

where

• N is the integer max(N f1 , . . . , N fn ).
• and for Y a topological space, the map ϵY : |Sing•(X ∨r )| → Y is the counit of the adjunction

between topological spaces and simplicial sets.
• δsdN f (X×△m ) : sdN f (X ×△m) → sdN f (X ×△m)× sdN f (X ×△m) is the diagonal map.
• π2 : X ×△m →△m is the projection.
• a : |sdN (sdN f (X ×△m)× sdN f (△m))|→ |sdN (sdN f (X ×△m)×△m)| is the map |sdN (id×ν△m ◦
· · · ◦νsdN f −1 △m )|.

• b : |sdN (Sing•|X ∨r |×△m)| → |Sing•|X ∨r |×△m | is a homeomorphism, by Lemma 2.6, which
states that there is a homeomorphism hZ : |sd(Z )|→ |Z | for every simplicial set Z (although
this homeomorphism is not necessarily natural for simplicial morphisms Z → Z ′).

• c : |Sing•|X ∨r |×△m | c−→ |X ∨r ×△m | is the composite

|Sing•|X ∨r |×△m | p−→ |Sing•|X ∨r ||× |△m | |ϵX∨r |×id−−−−−−→ |X ∨r |× |△m | q−→ |X ∨r ×△m |
where p and q are isomorphisms as the Kelley product commutes with geometric realisation.

• d : |X ∨r ×△m |→ |sdN (X ∨r ×△m)| is the homeomorphism that exists by Lemma 2.6.
• e : |sdN (X ∨r ×△m)|→ |sdN (X ∨r ×△m)|∨r is a homeomorphism because wedge sum commutes

with geometric realization.
• f :

∨r
i=1 |X ∨ni | → |X ∨n1+···+nr | is a homeomorphism, as the wedge sum commutes with geo-

metric realisation.
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We now start the proof of Theorem 3.20.

Proof of Theorem 3.20. Since, by Lemma 3.19, the operadSing•(CoEndTop(|X |)) is isomorphic to Q(X )(r ),
it suffices to construct a zig-zag of weak equivalences

CoEnd(X )
p−→ R(X )

q←−Q(X ).

We define p(r ) to be the morphism

Set△(X ,Ex∞(υX ∨r )) : Set△(X ,Ex∞(X ∨r )) → Set△(X ,Ex∞(Sing•|X ∨r |))

where υX ∨r : X ∨r → Sing•|X ∨r | is the unit of the singular chains – geometric realization adjunction. Ob-
serve that Ex∞(υX ∨r ) : Ex∞(X ∨r ) → Ex∞(Sing•|X ∨r |) is a weak equivalence between fibrant simplicial
sets. Hence it is a homotopy equivalence, and the functor Set△(X ,−) preserves homotopy equivalences.
Hence p is a weak equivalence.

It remains to check that it induces a morphism of operads. We check this directly. Note first
that Set△(X ,Ex∞(υX ∨r ))( f ) = Ex∞(υX ∨r ) ◦ f . Then observe that NEx∞(υX∨r )◦ f = N f and that we have
max(NυEx∞(X∨r )◦ f1 , . . . , NυEx∞(X∨r )◦ fn ) = max(N f1 , . . . , N fn ). Then observe that the morphism

|sdN (sdN f (X ×△m)×△m)| sdN ((Ex∞(υX∨r )◦ f ,N f )×id)−−−−−−−−−−−−−−−−−−→ |sdN (Sing•|X ∨r |×△m)|
factors as

|sdN (sdN f (X ×△m)×△m)| sdN (( f ,N f )×id)−−−−−−−−−−→ |sdN (X ∨r ×△m)| sdN (υX∨r ×id)−−−−−−−−−→ |sdN (Sing•|X ∨r |×△m)|
Moreover, having first observed that the following diagram is commutative

|sdN (X ∨r ×△m)| |sdN (Sing•|X ∨r |×△m)|

|(X ∨r ×△m)| |(Sing•|X ∨r |×△m)|,
h(X∨r ×△m )

|sdN (υX∨r ×id)|

hSing•|X∨r |×△m

|(υX∨r ×id)|

where hZ : |sd Z |→ |Z | is the map that exists by Lemma 2.6, we see that the composite

|sdN (X ∨r ×△m)| |sdN (υX∨r ×id)−−−−−−−−−−→ |sdN (Sing•|X ∨r |×△m)| b−→ |Sing•|X ∨r |×△m |
c−→ |Sing•|X ∨r ||× |△m | |ϵX∨r |×id−−−−−−→ |X ∨r |× |△m | d−→ |X ∨r ×△m | e−→ |sdN (X ×△m)|∨r

is an isomorphism by the triangle identities for the Sing•–|− | adjunction. Explicitly, the (left) triangle
identity for an adjunction L ⊣ R with unit η : i dX → R ◦L and counit ϵ : L ◦R → i dY states that the
natural transformation of functors defined as the composite

L
Lη→ LRL

ϵL→ L

is the identity transformation. Upon further observing that, for the same reason, the composite

|sdN (X ×△m)|∨r
∨r

i=1 |Ex∞(υX∨r )◦ fi |−−−−−−−−−−−−−→
r∨

i=1
|Sing•|X ∨ni ||

∨r
i=1 ϵX∨ni−−−−−−−→

r∨
i=1

|X ∨ni |

is exactly the map

|sdN (X ×△m)|∨r
∨r

i=1 | fi |−−−−−→
r∨

i=1
|X ∨ni |,

it becomes obvious that γ commutes with p, and so p is a weak equivalence of operads.
Similarly, we define q(r ) to be the morphism

Set△(X ,µSing•|X ∨r |) : Set△(X ,Sing•|X ∨r |) → Set△(X ,Ex∞(Sing•|X ∨r |)).

This is a weak equivalence of simplicial sets for exactly the same reasons that p(r ) is. Observe that
Nq(r )( f ) = 0 for all f ∈ Q(X )(r ). It follows from the form of the operad maps that the morphism q
identifies Q(X ) with a suboperad of R(X )(r ). In particular, q is a morphism of operads, and so a weak
equivalence of operads. □

Finally, we can prove the main result of this section.
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Theorem 3.16. Let Σn X be the n–fold suspension of a simplicial set X . As |ΣX | is a CW-complex, it
is in Top. Suspensions are a particular kind of finite colimits, and the geometric realization functor
commutes with all colimits as it is a right adjoint, so suspensions commute with geometric realization
and thus that |Σn X | is a coalgebra over the little n–discs operad in Top. This coalgebra structure is
an operadic morphism Φ :Dn → CoEndTop(|Σn X |). As discussed above, we can use Sing• to transfer
these operads and this algebra structure to the category of simplicial sets, producing the following
morphism of operads

Sing•(Φ) : Sing•(Dn) → Sing•(CoEndTop(|Σn X |))

Theorem 3.20 tells us that there is a weak equivalence betweenCoEndSet△(X ) andSing•(CoEndTop(|Σn X |)).
Observe that in each arity CoEndSet△(X )(n) is a mapping space where the target is a Kan complex,
hence Kan itself and a fibrant operad in the operadic model structure. By its construction, in each arity
Sing• CoEndTop(|Σn X |) is a singular complex and thus as an operad it is also fibrant.

Since we have a weak equivalence between fibrant operads, over the cofibrant replacement (Sing•Dn)∞
of Sing•Dn we have an induced bijection between the homotopy classes of morphisms of operads

[(Sing•Dn)∞,CoEndSet△(Σn X )] ∼= [(Sing•Dn)∞,Sing• CoEndTop(|Σn X |)].

So we can choose a morphism φ : (Sing•Dn)∞ → CoEndSet△(Σn X ), such that φ is homotopy equivalent
to Sing•Φ.

Finally to prove that n-fold suspensions are En-algebras it suffices to note that all topological
operads are fibrant and so the weak equivalence between the little n-discs operad and the geometric
realization of the Barratt-Eccles En-operad remains one when taking the Sing• functor. The Barratt-
Eccles En-operad Γ(n) is weakly equivalent to Sing•|Γ(n)|, and in particular, (Sing•Dn)∞ can be taken to
be the Boardman-Vogt resolution of Γ(n); the operad W (△1,Γ(n)). □
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