

# Strictly commutative dg-algebras in positive characteristic

Séminaire d'Homotopie et Géométrie Algébrique  
Université de Toulouse

Oisín Flynn-Connolly (Université Sorbonne Paris Nord)

September 17, 2024



# Talk plan

- ① Review  $E_\infty$ -algebras and Steenrod operations.

# Talk plan

- ① Review  $E_\infty$ -algebras and Steenrod operations.
- ② Introduce and motivate strictly commutative dg-algebras in positive characteristic and their basic properties.

# Talk plan

- ① Review  $E_\infty$ -algebras and Steenrod operations.
- ② Introduce and motivate strictly commutative dg-algebras in positive characteristic and their basic properties.
- ③ Obstruction theory in positive characteristic. Define cotriple products, compute the primitive secondary cohomology operations for strictly commutative dg-algebras for and formulate the coherent vanishing of higher Steenrod operations. (Reference: ArXiv: 2404.16681)

# Talk plan

- ① Review  $E_\infty$ -algebras and Steenrod operations.
- ② Introduce and motivate strictly commutative dg-algebras in positive characteristic and their basic properties.
- ③ Obstruction theory in positive characteristic. Define cotriple products, compute the primitive secondary cohomology operations for strictly commutative dg-algebras for and formulate the coherent vanishing of higher Steenrod operations. (Reference: ArXiv: 2404.16681)
- ④ Introduce an explicit model for the de Rham forms over  $\widehat{\mathbb{Z}_p}$ . Study what information can be extracted from it. (Reference: Chapter 4 of my thesis)

# Part 0: A crash-course in $E_\infty$ -algebras

# dg-algebras

## Definition

A (commutative) dg-algebra is a chain complex  $(A, d)$  equipped with a binary (graded commutative) associative multiplication  $m : A^p \otimes A^q \rightarrow A^{p+q}$  and such that  $d$  is a derivation with respect to  $m$ . Alternatively it is an algebra over the operad  $\text{Assoc}$  (or  $\text{Com}$ ) in dg-modules.

## Example

Let  $X$  be a topological space. Then the cohomology ring  $(H^\bullet(X, R), 0)$  equipped with the cup product forms a commutative dg-algebra.

Problem: the cohomology is not a complete invariant of homotopy type.

## Example

Let  $X$  be a topological space or simplicial set. Then the singular cochains  $(C^\bullet(X, R), d)$  equipped with the cochain level cup product forms a dg-algebra that is generally not graded commutative.

# $E_\infty$ -algebras

## Definition

An  $E_\infty$ -operad is any operadic resolution  $\mathcal{E} \xrightarrow{\sim} \text{Com}$  such that the  $\mathbb{S}_k$  action on  $\mathcal{E}$  is free.

The singular cochain complex  $C^\bullet(X, R)$  is an  $E_\infty$ -algebra. This is a complete homotopy invariant.

## Theorem (Mandell, 2003)

*Two finite type nilpotent spaces  $X$  and  $Y$  are weakly equivalent if and only if their  $E_\infty$ -algebras of singular cochains with integral coefficients are quasi-isomorphic as  $E_\infty$ -algebras.*

# The Barratt-Eccles operad

## Definition

The Barratt-Eccles operad  $\mathcal{E}$  is an operad in simplicial sets given in each arity are of the form

$$\mathcal{E}(r)_n = \{(w_0, \dots, w_n) \in \mathbb{S}_r \times \dots \times \mathbb{S}_r\}$$

equipped with face and degeneracy maps

$$\begin{aligned}d_i(w_0, \dots, w_n) &= (w_0, \dots, w_{i-1}, \hat{w}_i, w_{i+1}, \dots, w_n) \\s_i(w_0, \dots, w_n) &= (w_0, \dots, w_{i-1}, w_i, w_i, w_{i+1}, \dots, w_n).\end{aligned}$$

$\mathbb{S}_r$  acts on  $\mathcal{E}(n)$  diagonally. Finally the compositions are also defined componentwise via the explicit composition law of

$$\begin{aligned}\gamma : \mathbb{S}(r) \times \mathbb{S}(n_1) \times \dots \times \mathbb{S}(n_r) &\rightarrow \mathbb{S}(n_1 + \dots + n_r) \\(\sigma, \sigma_1, \dots, \sigma_r) &\mapsto \sigma_{n_1 \dots n_r} \circ (\sigma_1 \times \dots \times \sigma_r)\end{aligned}$$

# Steenrod operations

Let  $\mathcal{P}$  be an operad and let  $V$  be a dg-module. Recall that the free  $\mathcal{P}$ -algebra on  $V$  is

$$\mathcal{P}(V) = \bigoplus_{i=1}^{\infty} \mathcal{P}(i) \otimes^{\mathbb{S}_i} V^{\otimes i}$$

# Steenrod operations

Let  $\mathcal{P}$  be an operad and let  $V$  be a dg-module. Recall that the free  $\mathcal{P}$ -algebra on  $V$  is

$$\mathcal{P}(V) = \bigoplus_{i=1}^{\infty} \mathcal{P}(i) \otimes^{\mathbb{S}_i} V^{\otimes i}$$

When working in finite characteristic, the cohomology of the free  $E_{\infty}$ -algebra is not the symmetric algebra. Instead one has

$$H^{\bullet} \mathcal{E}(V) = \mathcal{A}(H^{\bullet}(V))$$

Here  $\mathcal{A}$  is the (unstable) Steenrod algebra which contains  $\text{Sym}(H^{\bullet}(V))$

# Steenrod operations

Let  $\mathcal{P}$  be an operad and let  $V$  be a dg-module. Recall that the free  $\mathcal{P}$ -algebra on  $V$  is

$$\mathcal{P}(V) = \bigoplus_{i=1}^{\infty} \mathcal{P}(i) \otimes^{\mathbb{S}_i} V^{\otimes i}$$

When working in finite characteristic, the cohomology of the free  $E_{\infty}$ -algebra is not the symmetric algebra. Instead one has

$$H^{\bullet} \mathcal{E}(V) = \mathcal{A}(H^{\bullet}(V))$$

Here  $\mathcal{A}$  is the (unstable) Steenrod algebra which contains  $\text{Sym}(H^{\bullet}(V))$  but also extra elements like  $\text{Sq}^n(v)$ . One has a map

$$\mathcal{A}(H^{\bullet}(V)) \xrightarrow{H^{\bullet}(\gamma)} H^{\bullet}(V)$$

This means that the cohomology of an  $E_{\infty}$ -algebra is commutative but also acted on by these extra elements in the Steenrod algebra.

# Part 1: Strictly commutative dg-algebras

# Motivations

**The geometric motivation** The starting observation of rational homotopy theory is that, in zero characteristic, every  $E_\infty$ -algebra is weakly equivalent to a commutative dg-algebra. This viewpoint allows us to “completely” understand spaces rationally.

- A natural question: when does an  $E_\infty$ -algebra admit a commutative model over  $\mathbb{F}_p$  or  $\widehat{\mathbb{Z}_p}$ ?

**The geometric motivation** The starting observation of rational homotopy theory is that, in zero characteristic, every  $E_\infty$ -algebra is weakly equivalent to a commutative dg-algebra. This viewpoint allows us to “completely” understand spaces rationally.

- A natural question: when does an  $E_\infty$ -algebra admit a commutative model over  $\mathbb{F}_p$  or  $\widehat{\mathbb{Z}_p}$ ?
- In situations where you cannot give such a model, what is the best model that you can give? What information can we extract from it?

**The algebraic motivation** Studying  $E_\infty$ -algebras is hard. There are still being papers written on the primary Steenrod operations and the secondary Steenrod operations are incredibly complicated. Studying commutative dg-algebras gives us insight into this difficult structure in a baby case.

# Three flavours of commutativity

[Fresse, Cartan] In positive characteristic, there are three ways to form the free commutative (or  $\mathcal{P}$ ) algebra on a dg-module  $A$ .

# Three flavours of commutativity

[Fresse, Cartan] In positive characteristic, there are three ways to form the free commutative (or  $\mathcal{P}$ ) algebra on a dg-module  $A$ .

- Firstly, one can take coinvariants:  $\mathcal{P}(A) = \bigoplus_{k=1}^{\infty} (\mathcal{P}(k) \otimes A^{\otimes k})_{\mathbb{S}_k}$ .  
Algebras over this monad are dg-modules  $A$  equipped with a binary multiplication  $m : A^{\bullet} \otimes A^{\bullet} \rightarrow A^{\bullet}$ .

# Three flavours of commutativity

[Fresse, Cartan] In positive characteristic, there are three ways to form the free commutative (or  $\mathcal{P}$ ) algebra on a dg-module  $A$ .

- Firstly, one can take coinvariants:  $\mathcal{P}(A) = \bigoplus_{k=1}^{\infty} (\mathcal{P}(k) \otimes A^{\otimes k})_{\mathbb{S}_k}$ .  
Algebras over this monad are dg-modules  $A$  equipped with a binary multiplication  $m : A^{\bullet} \otimes A^{\bullet} \rightarrow A^{\bullet}$ .
- Secondly, one can take invariants  $\Gamma\mathcal{P}(A) = \bigoplus_{k=1}^{\infty} (\mathcal{P}(k) \otimes A^{\otimes k})^{\mathbb{S}_k}$ .  
Algebras over this monad are *divided power algebras*: dg-modules  $A$  equipped with a binary multiplication  $m : A^{\bullet} \otimes A^{\bullet} \rightarrow A^{\bullet}$  and extra operations  $\gamma_k$  which behave like  $\frac{x^k}{k!}$ . Over  $\mathbb{F}_p$ , this implies that  $x^p = 0$ .

# Three flavours of commutativity

[Fresse, Cartan] In positive characteristic, there are three ways to form the free commutative (or  $\mathcal{P}$ ) algebra on a dg-module  $A$ .

- Firstly, one can take coinvariants:  $\mathcal{P}(A) = \bigoplus_{k=1}^{\infty} (\mathcal{P}(k) \otimes A^{\otimes k})_{\mathbb{S}_k}$ .  
Algebras over this monad are dg-modules  $A$  equipped with a binary multiplication  $m : A^{\bullet} \otimes A^{\bullet} \rightarrow A^{\bullet}$ .
- Secondly, one can take invariants  $\Gamma\mathcal{P}(A) = \bigoplus_{k=1}^{\infty} (\mathcal{P}(k) \otimes A^{\otimes k})^{\mathbb{S}_k}$ .  
Algebras over this monad are *divided power algebras*: dg-modules  $A$  equipped with a binary multiplication  $m : A^{\bullet} \otimes A^{\bullet} \rightarrow A^{\bullet}$  and extra operations  $\gamma_k$  which behave like  $\frac{x^k}{k!}$ . Over  $\mathbb{F}_p$ , this implies that  $x^p = 0$ .
- Finally one has a monad  $\mathcal{P}(A) \rightarrow \Lambda\mathcal{P}(A) \rightarrow \Gamma\mathcal{P}(A)$  given by the image of the norm map.

# Three flavours of commutativity

[Fresse, Cartan] In positive characteristic, there are three ways to form the free commutative (or  $\mathcal{P}$ ) algebra on a dg-module  $A$ .

- Firstly, one can take coinvariants:  $\mathcal{P}(A) = \bigoplus_{k=1}^{\infty} (\mathcal{P}(k) \otimes A^{\otimes k})_{\mathbb{S}_k}$ . Algebras over this monad are dg-modules  $A$  equipped with a binary multiplication  $m : A^{\bullet} \otimes A^{\bullet} \rightarrow A^{\bullet}$ .
- Secondly, one can take invariants  $\Gamma\mathcal{P}(A) = \bigoplus_{k=1}^{\infty} (\mathcal{P}(k) \otimes A^{\otimes k})^{\mathbb{S}_k}$ . Algebras over this monad are *divided power algebras*: dg-modules  $A$  equipped with a binary multiplication  $m : A^{\bullet} \otimes A^{\bullet} \rightarrow A^{\bullet}$  and extra operations  $\gamma_k$  which behave like  $\frac{x^k}{k!}$ . Over  $\mathbb{F}_p$ , this implies that  $x^p = 0$ .
- Finally one has a monad  $\mathcal{P}(A) \rightarrow \Lambda\mathcal{P}(A) \rightarrow \Gamma\mathcal{P}(A)$  given by the image of the norm map.

When we are working over a field of characteristic 0 (the classical theory of Loday-Valette) or the action of  $\mathbb{S}_k$  on  $\mathcal{P}(k)$  is free (theory of quasi-planar operads of Le Grignou-Roca Lucio), invariants coincide with coinvariants and the three notions above coincide (subject to certain finiteness assumptions).

## Theorem (Hinich, 1997)

*Let  $\mathcal{P}$  be a cofibrant (or  $\mathbb{S}$ -split) operad over a commutative ring  $R$ . Then the category of  $\mathcal{P}$ -algebras over  $R$  is a closed model category with quasi-isomorphisms as the weak equivalences and surjective maps as fibrations.*

## Theorem (Hinich, 1997)

Let  $\mathcal{P}$  be a cofibrant (or  $\mathbb{S}$ -split) operad over a commutative ring  $R$ . Then the category of  $\mathcal{P}$ -algebras over  $R$  is a closed model category with quasi-isomorphisms as the weak equivalences and surjective maps as fibrations.

The Barratt-Eccles operad is  $\mathbb{S}$ -split. So  $E_\infty$ -algebras have a nice homotopy theory.

## Theorem (Hinich, 1997)

Let  $\mathcal{P}$  be a cofibrant (or  $\mathbb{S}$ -split) operad over a commutative ring  $R$ . Then the category of  $\mathcal{P}$ -algebras over  $R$  is a closed model category with quasi-isomorphisms as the weak equivalences and surjective maps as fibrations.

The Barratt-Eccles operad is  $\mathbb{S}$ -split. So  $E_\infty$ -algebras have a nice homotopy theory.

Unfortunately the commutative operad is not  $\mathbb{S}$ -split. In fact, the category of commutative algebras cannot be equipped with a model structure in a nice way because the functor  $\text{Sym}$  is not homotopy invariant.

## Theorem (Hinich, 1997)

Let  $\mathcal{P}$  be a cofibrant (or  $\mathbb{S}$ -split) operad over a commutative ring  $R$ . Then the category of  $\mathcal{P}$ -algebras over  $R$  is a closed model category with quasi-isomorphisms as the weak equivalences and surjective maps as fibrations.

The Barratt-Eccles operad is  $\mathbb{S}$ -split. So  $E_\infty$ -algebras have a nice homotopy theory.

Unfortunately the commutative operad is not  $\mathbb{S}$ -split. In fact, the category of commutative algebras cannot be equipped with a model structure in a nice way because the functor  $\text{Sym}$  is not homotopy invariant.

## Example

Consider  $M = \mathbb{F}_p[x \rightarrow dx]$ . One has  $H^\bullet(\text{Sym}(M)) \neq 0$  because 1)  $x^{p^n}$  is a cocycle 2)  $x^{p^n-1}dx$  is not closed.

## Part 2: Obstruction theory over $\mathbb{F}_p$

# A crash-course in Massey products 1

**When is a commutative algebra over  $\mathbb{Q}$  weakly equivalent to its cohomology?**

# A crash-course in Massey products 1

**When is a commutative algebra over  $\mathbb{Q}$  weakly equivalent to its cohomology?**

Answer: The obstructions to formality are given by Massey products.

# A crash-course in Massey products 1

**When is a commutative algebra over  $\mathbb{Q}$  weakly equivalent to its cohomology?**

Answer: The obstructions to formality are given by Massey products.

## Definition

Let  $A$  be a dg-algebra. Let  $a, b, c \in H^\bullet(A)$  be such that  $ab = 0$  and  $bc = 0$ . Let  $x, y, z$  be cocycles representing  $a, b, c$  and suppose  $du = xy$  and  $dv = yz$ . Then  $uz - xv$  is a cocycle that we call the (primitive, secondary) Massey product, it represents a well-defined class of

$$\frac{H^{|a|+|b|+|c|-1}(A)}{aH^{|b|+|c|-1}(A) + H^{|a|+|b|-1}(A)c}$$

# A crash-course in Massey products 1

**When is a commutative algebra over  $\mathbb{Q}$  weakly equivalent to its cohomology?**

Answer: The obstructions to formality are given by Massey products.

## Definition

Let  $A$  be a dg-algebra. Let  $a, b, c \in H^\bullet(A)$  be such that  $ab = 0$  and  $bc = 0$ . Let  $x, y, z$  be cocycles representing  $a, b, c$  and suppose  $du = xy$  and  $dv = yz$ . Then  $uz - xv$  is a cocycle that we call the (primitive, secondary) Massey product, it represents a well-defined class of

$$\frac{H^{|a|+|b|+|c|-1}(A)}{aH^{|b|+|c|-1}(A) + H^{|a|+|b|-1}(A)c}$$

## Proposition (Massey, 1958)

*If for some  $a, b, c \in H^\bullet(A)$ , the class above is nonzero, then  $A$  is not formal*

# Higher Massey products

- The (primitive) Massey product we gave is a cocycle because  $A$  satisfies the associative relation. (Massey, 1958)

# Higher Massey products

- The (primitive) Massey product we gave is a cocycle because  $A$  satisfies the associative relation. (Massey, 1958)
- There are higher order primitive Massey products, defined whenever lower Massey products vanish. These correspond to higher syzygies of the associative relation (relations between relations). (Massey, 1958)

# Higher Massey products

- The (primitive) Massey product we gave is a cocycle because  $A$  satisfies the associative relation. (Massey, 1958)
- There are higher order primitive Massey products, defined whenever lower Massey products vanish. These correspond to higher syzygies of the associative relation (relations between relations). (Massey, 1958)
- There are also matric Massey products which correspond to more complicated relations in the cohomology algebra. (May, 1968)

# Higher Massey products

- The (primitive) Massey product we gave is a cocycle because  $A$  satisfies the associative relation. (Massey, 1958)
- There are higher order primitive Massey products, defined whenever lower Massey products vanish. These correspond to higher syzygies of the associative relation (relations between relations). (Massey, 1958)
- There are also matric Massey products which correspond to more complicated relations in the cohomology algebra. (May, 1968)
- (Important) These can be packaged together as the differentials in the *Eilenberg-Moore spectral sequence* which computes  $\text{Tor}^A(\mathbb{k}, \mathbb{k})$  from  $\text{Tor}^{H(A)}(\mathbb{k}, \mathbb{k})$ .

# Higher Massey products

- The (primitive) Massey product we gave is a cocycle because  $A$  satisfies the associative relation. (Massey, 1958)
- There are higher order primitive Massey products, defined whenever lower Massey products vanish. These correspond to higher syzygies of the associative relation (relations between relations). (Massey, 1958)
- There are also matric Massey products which correspond to more complicated relations in the cohomology algebra. (May, 1968)
- (Important) These can be packaged together as the differentials in the *Eilenberg-Moore spectral sequence* which computes  $\text{Tor}^A(\mathbb{k}, \mathbb{k})$  from  $\text{Tor}^{H(A)}(\mathbb{k}, \mathbb{k})$ .
- More recently, this machinery for primitive Massey products has been extended to general quadratic operads. (Muro /FC.-Moreno-Fernandez)

# Coherent vanishing of Massey products

Unfortunately, it is not enough for Eilenberg-Moore spectral sequence to collapse on  $E_2$ -page, in other words, for all Massey products to vanish. Formality turns out to be equivalent to all of these vanishing in a *coherent* way.

# Coherent vanishing of Massey products

Unfortunately, it is not enough for Eilenberg-Moore spectral sequence to collapse on  $E_2$ -page, in other words, for all Massey products to vanish. Formality turns out to be equivalent to all of these vanishing in a *coherent* way.

## Theorem (Deligne, Griffiths, Morgan, Sullivan, 1975)

Let  $A$  be a commutative dg-algebra in  $\mathbb{Q}$ -vector spaces. Let  $\mathfrak{m} = (\text{Sym}(\bigoplus_{i=0}^{\infty} V_i), d)$  be the minimal model for  $A$ . Then  $A$  is formal if and only if, there is in each  $V_i$  a complement  $B_i$  to the cocycles  $Z_i$ ,  $V_i = Z_i \oplus B_i$ , such that any closed form,  $a$ , in the ideal,  $I(\bigoplus_{i=0}^{\infty} B_i)$ , is exact.

# Sullivan algebras

## Definition

Let  $\mathcal{P}$  be an operad over a field and  $A$  is a  $\mathcal{P}$ -algebra. A *Sullivan model* for  $A$  is a semi-free algebra  $f : (\mathcal{P}(\bigoplus_{i=0}^{\infty} V_i), d) \xrightarrow{\sim} A$  such that

- the map  $f|_{V_0} : V_0 \rightarrow A$  is a weak equivalence of dg-vector spaces. In particular  $V_0 = H^{\bullet}(A)$ .
- the differential satisfies  $d(V_k) \subseteq (\mathcal{P}(\bigoplus_{i=0}^{k-1} V_i), d)$ .
- We require that  $V_k \oplus (\mathcal{P}(\bigoplus_{i=0}^{k-1} V_i)) \rightarrow A$  is a weak equivalence for each  $k$ .

The intuition is that a Sullivan model captures the idea of building a quasi-free resolution in stages, starting with a map  $H \rightarrow A$  and progressively killing cocycles.

# $\mathcal{P}$ -Massey products

We use truncated Sullivan algebras to define cotriple products in this context.

## Definition

A  $N$ -step *Sullivan model* for  $A$  is a semi-free algebra

$f : (\mathcal{P}(\bigoplus_{i=0}^N V_i), d) \rightarrow A$  such that

- the differential satisfies  $d(V_k) \subseteq (\mathcal{P}(\bigoplus_{i=0}^{k-1} V_i), d)$
- We require that  $V_k \oplus (\mathcal{P}(\bigoplus_{i=1}^{k-1} V_i)) \rightarrow A$  is a weak equivalence for each  $k$ .

Let  $I(\mathcal{P}(\bigoplus_{i=1}^N V_i), d)$  be the ideal generated by  $\mathcal{P}(\bigoplus_{i=1}^{k-1} V_i), d$ . We call nonzero  $\sigma \in H^\bullet(I(\mathcal{P}(\bigoplus_{i=1}^{k-1} V_i), d))$  an  $N^{th}$  order cotriple product with value  $H^\bullet(f)(\sigma)$

# $\mathcal{P}$ -Massey products

We use truncated Sullivan algebras to define cotriple products in this context.

## Definition

A  $N$ -step *Sullivan model* for  $A$  is a semi-free algebra

$f : (\mathcal{P}(\bigoplus_{i=0}^N V_i), d) \rightarrow A$  such that

- the differential satisfies  $d(V_k) \subseteq (\mathcal{P}(\bigoplus_{i=0}^{k-1} V_i), d)$
- We require that  $V_k \oplus (\mathcal{P}(\bigoplus_{i=0}^{k-1} V_i)) \rightarrow A$  is a weak equivalence for each  $k$ .

Let  $I(\mathcal{P}(\bigoplus_{i=1}^N V_i), d)$  be the ideal generated by  $\mathcal{P}(\bigoplus_{i=1}^{k-1} V_i), d$ . We call nonzero  $\sigma \in H^\bullet(I(\mathcal{P}(\bigoplus_{i=1}^{k-1} V_i), d))$  an  $N^{th}$  order cotriple product with value  $H^\bullet(f)(\sigma)$

## Theorem

Let  $\mathcal{P}$  be an operad that reflects homotopy equivalences. A morphism of  $\mathcal{P}$ -algebras  $f : A \rightarrow B$  preserves cotriple product sets. If furthermore  $f$  is a quasi-isomorphism, then  $H^*(f)$  induces a bijection between the corresponding cotriple product sets.

## Theorem

*Let  $\mathcal{P}$  be an operad that reflects homotopy equivalences and  $A$  be a  $\mathcal{P}$ -algebra. Take the cotriple resolution of  $A$  and consider the spectral sequence obtained from the skeletal filtration. Then cotriple products represent the differentials in this spectral sequence.*

# Massey products in positive characteristic

Over  $\mathbb{F}_p$  there are more secondary operations.

## Definition (F. C. )

Let  $A$  be a commutative dg-algebra over  $\mathbb{F}_p$ . Let  $x, y \in H^\bullet(A)$  be such that  $xy = 0$ . Choose cocycles  $a, b \in A$  representing  $x, y$  respectively. Then there exists  $c \in A$  such that  $dc = xy$ . Then  $c^p$  is a cocycle which we call the *type 1 secondary commutative product* of  $x$  and  $y$ . This represents a well defined element of

$$\frac{H^{p(|x|+|y|-1)}(A)}{H^{(|x|+|y|-1)}(A)^p + x^p H^{p(|y|-1)}(A) + y^p H^{p(|x|-1)}(A)}$$

where the term  $x^p H^{p(|y|-1)}(A) + y^p H^{p(|x|-1)}(A)$  in the denominator accounts for the choice of representatives  $x$  and  $y$ .

## Type 2 commutative products

### Definition (F. C.)

Let  $p$  be an odd prime. Then there is a *type 2 secondary commutative product* defined for  $x, y \in H^*(A)$  such that  $xy = 0$  we choose cocycles  $a, b \in A$  representing  $x, y$  respectively. Then there exists  $c \in A$  such that  $dc = xy$ . Then  $c^{p^n-1}ab$  is a cocycle which we call the *type 2 secondary commutative product* of  $x$  and  $y$ . In this case, the operation represents a well-defined element of

$$\frac{H^{p^n(|x|+|y|-1)+|x|+|y|}(A)}{H^{(|x|+|y|-1)}(A)^{p^n-1} \cdot xy}$$

Observe that  $d(\frac{1}{p}c^p) = c^{p-1}ab$ . Therefore type 2 secondary commutative products vanish on divided power algebras. Therefore this kind of operation provides an obstruction for a commutative algebra  $A$  to be weakly equivalent to a divided power algebra.

# Completeness of secondary operations

## Definition

We call a cotriple product *primitive* if it arises from monomial relations in cohomology.

## Proposition

*All secondary primitive cotriple products on a commutative dg-algebra  $A$  over  $\mathbb{F}_p$  are linear combinations of*

- *classical Massey products.*
- *Type 1 secondary commutative operations*
- *Type 2 secondary commutative operations.*

# Secondary cotriple operations: Producing counterexamples

Cotriple products can be used to produce examples of:

- Using type 1 operations. Commutative algebras  $A, B$  over  $\mathbb{Z}$  such that  $A \otimes \mathbb{Q}$  and  $B \otimes \mathbb{Q}$  are weakly equivalent, but  $A \otimes \mathbb{F}_p$  and  $B \otimes \mathbb{F}_p$  are not.
- Using type 2 operations. Commutative algebras which have a divided power structure on cohomology but which are not weakly equivalent to a divided power algebra.

# Applications of secondary cotriple operations: Producing counterexamples

The extra cotriple operations are preserved by maps of commutative algebras but not associative algebras. So one has:

- Commutative algebras  $A, B$  over  $\mathbb{F}_p$ , which are weakly equivalent as associative algebras but not commutative algebras.

Finally, studying the indeterminacies of third order cotriple products, one can produce examples of:

- Commutative algebras  $A, B$  over  $\mathbb{F}_p$  that are weakly equivalent as  $E_\infty$ -algebras but not commutative algebras.

# Obstructions to strict commutativity

**When is an  $E_\infty$ -algebra with coefficients in  $\mathbb{F}_p$  weakly equivalent to a strictly commutative dg-algebra?**

# Obstructions to strict commutativity

**When is an  $E_\infty$ -algebra with coefficients in  $\mathbb{F}_p$  weakly equivalent to a strictly commutative dg-algebra?**

A: There are first-order obstructions: the *Steenrod operations*.

# Obstructions to strict commutativity

**When is an  $E_\infty$ -algebra with coefficients in  $\mathbb{F}_p$  weakly equivalent to a strictly commutative dg-algebra?**

A: There are first-order obstructions: the *Steenrod operations*.

Proposition (Mandell, 2009)

*The  $E_\infty$ -algebra  $C^\bullet(X, \mathbb{F}_p)$  is rectifiable iff  $X$  is the disjoint union of contractible spaces.*

# Obstructions to strict commutativity

**When is an  $E_\infty$ -algebra with coefficients in  $\mathbb{F}_p$  weakly equivalent to a strictly commutative dg-algebra?**

A: There are first-order obstructions: the *Steenrod operations*.

**Proposition (Mandell, 2009)**

*The  $E_\infty$ -algebra  $C^\bullet(X, \mathbb{F}_p)$  is rectifiable iff  $X$  is the disjoint union of contractible spaces.*

There are less obvious obstructions given by secondary operations.

**Conjecture (Mandell, 2009)**

*Let  $X$  be a finite  $n$ -connected simplicial set. Then, after inverting finitely many primes  $C^\bullet(X, \mathbb{Z})$  has a commutative model as an  $E_n$ -algebra. If  $X$  is formal, then, after possibly inverting more primes, this commutative model is formal.*

# Coherent vanishing of higher Steenrod operations

## Definition

Let  $A$  be an  $E_\infty$ -algebra over  $\mathbb{F}_p$ . Then the higher Steenrod operations *vanish coherently* if for every (or any) Sullivan resolution  $(\mathcal{E}(\bigoplus_{i=0}^{\infty} V_i), d)$  for  $A$ , there exists a splitting  $V_i = X_i \oplus Y_i$ , with  $X_0 = V_0$ ; such that  $(\text{Sym}(\bigoplus_{i=0}^{\infty} X_i), d)$  is a Sullivan algebra and the kernel of

$$(\mathcal{E}(\bigoplus_{i=0}^{\infty} V_i), d) \rightarrow (\text{Sym}(\bigoplus_{i=0}^{\infty} X_i), d)$$

is acyclic.

## Theorem (FC)

*Let  $A$  be an  $E_\infty$ -algebra over  $\mathbb{F}_p$ . Then  $A$  is rectifiable if and only if its higher Steenrod operations vanish coherently.*

Similar result for formality.

## Part 2: de Rham forms in positive characteristic

# de Rham forms in positive characteristic

Motivation: we want to find a best commutative approximation to the  $E_\infty$  algebra  $C^\bullet(X, \widehat{\mathbb{Z}_p})$ .

# de Rham forms in positive characteristic

Motivation: we want to find a best commutative approximation to the  $E_\infty$  algebra  $C^\bullet(X, \widehat{\mathbb{Z}_p})$ .

Key idea: We want to imitate Sullivan's approach to rational homotopy theory.

## Theorem (Sullivan, 1978)

Suppose one has a functor  $A_{PL} : \Delta^\bullet \rightarrow \text{CDGA}_{\mathbb{Q}}$  that satisfies the Poincaré Lemma:  $H^0(\Delta^n, \mathbb{Q}) = \mathbb{Q}$  and  $H^i(\Delta^n, \mathbb{Q}) = 0$  for  $i > 0$ ; and which is extendable  $\pi_k(A_{PL}^k(\Delta^\bullet)) = 0$  for all  $k \geq 0$ . Then the left Kan extension along  $\Delta^\bullet \rightarrow \text{Set}_\Delta$

$$A_{PL} : \text{Set}_\Delta \rightarrow \text{CDGA}_{\mathbb{Q}}$$

is such that there is a zig-zag of  $E_\infty$ -algebras

$$A_{PL}^\bullet(X) \xrightarrow{\sim} (A_{PL} \otimes C)^\bullet(X) \xleftarrow{\sim} C^\bullet(X, \mathbb{Q})$$

## Part 2: de Rham forms in positive characteristic

### Definition

The simplicial cochain coalgebra  $\Omega_{\bullet}^*$  has for  $n$ -simplices

$$\Omega_n^* = \frac{\widehat{\mathbb{Z}_p}\langle x_0, \dots, x_n \rangle \otimes \Lambda(dx_0, \dots, dx_n)}{(x_0 + \dots + x_n - p, dx_0 + \dots + dx_n)}, \quad |x_i| = 0, \quad |dx_i| = 1.$$

# Part 2: de Rham forms in positive characteristic

## Definition

The simplicial cochain coalgebra  $\Omega_{\bullet}^*$  has for  $n$ -simplices

$$\Omega_n^* = \frac{\widehat{\mathbb{Z}_p}\langle x_0, \dots, x_n \rangle \otimes \Lambda(dx_0, \dots, dx_n)}{(x_0 + \dots + x_n - p, dx_0 + \dots + dx_n)}, \quad |x_i| = 0, \quad |dx_i| = 1.$$

The differential  $d : \Omega_n^* \rightarrow \Omega_n^{*+1}$  is determined by the formula

$$d(f) = \sum_{i=0}^n \frac{\partial f}{\partial x_i} dx_i$$

for  $f \in \Gamma_p(x_0, \dots, x_n)/(x_0 + \dots + x_n - p)$  and then extended by the Leibniz rule

# Part 2: de Rham forms in positive characteristic

## Definition

The simplicial cochain coalgebra  $\Omega_{\bullet}^*$  has for  $n$ -simplices

$$\Omega_n^* = \frac{\widehat{\mathbb{Z}_p}\langle x_0, \dots, x_n \rangle \otimes \Lambda(dx_0, \dots, dx_n)}{(x_0 + \dots + x_n - p, dx_0 + \dots + dx_n)}, \quad |x_i| = 0, \quad |dx_i| = 1.$$

The differential  $d : \Omega_n^* \rightarrow \Omega_n^{*+1}$  is determined by the formula

$$d(f) = \sum_{i=0}^n \frac{\partial f}{\partial x_i} dx_i$$

for  $f \in \Gamma_p(x_0, \dots, x_n)/(x_0 + \dots + x_n - p)$  and then extended by the Leibniz rule. The simplicial structure is defined as follows

$$d_i^n : \Omega_n^* \rightarrow \Omega_{n+1}^* : x_k \mapsto \begin{cases} x_k & \text{for } k < i. \\ 0 & \text{for } k = i. \\ x_{k-1} & \text{for } k > i. \end{cases}$$

and

$$s_i^n : \Omega_n^* \rightarrow \Omega_{n-1}^* : x_k \mapsto \begin{cases} x_k & \text{for } k < i. \\ x_k + x_{k+1} & \text{for } k = i. \\ x_{k+1} & \text{for } k > i. \end{cases}$$

# The cohomology of de Rham forms

Cartan considered a similar construction except over  $\mathbb{Z}\langle t \rangle$ . The functor

$$\Omega : \Delta^\bullet \rightarrow \text{CDGA}_{\widehat{\mathbb{Z}_p}}$$

satisfies the Poincaré Lemma but is not extendable.

# The cohomology of de Rham forms

Cartan considered a similar construction except over  $\mathbb{Z}\langle t \rangle$ . The functor

$$\Omega : \Delta^\bullet \rightarrow \text{CDGA}_{\widehat{\mathbb{Z}_p}}$$

satisfies the Poincaré Lemma but is not extendable. However, it is *almost extendable* and one can suitably modify Sullivan's proof to produce the following.

## Theorem (Cartan, F.C)

Consider the left Kan extension along  $\Delta^\bullet \rightarrow \text{Set}_\Delta$

$$\Omega : \text{Set}_\Delta \rightarrow \text{CDGA}_{\widehat{\mathbb{Z}_p}}$$

Then there is an isomorphism of cohomology algebras

$$H^\bullet(X, \widehat{\mathbb{Z}_p}) = H^\bullet(\Omega(X)).$$

# The homotopy type of the de Rham forms

What about the  $E_\infty$ -homotopy type?

## Definition

Let  $X$  be a simplicial set. We define the *altered singular cochain algebra*  $\mathcal{C}^\bullet(X)$  to be the following subalgebra of the singular cochains  $C^\bullet(X)$ .

$$\mathcal{C}^n(X) = \left\langle p^i \sigma : \text{ for } \sigma \in C^n(X, \widehat{\mathbb{Z}_p}) \text{ and } \begin{cases} i = n & \text{if } d\sigma = 0. \\ i = n + 1 & \text{otherwise.} \end{cases} \right\rangle$$

The differential and the  $E_\infty$  structure are that induced by those on  $C^\bullet(X, \widehat{\mathbb{Z}_p})$ .

# The homotopy type of the de Rham forms

What about the  $E_\infty$ -homotopy type?

## Definition

Let  $X$  be a simplicial set. We define the *altered singular cochain algebra*  $\mathcal{C}^\bullet(X)$  to be the following subalgebra of the singular cochains  $C^\bullet(X)$ .

$$\mathcal{C}^n(X) = \left\langle p^i \sigma : \text{ for } \sigma \in C^n(X, \widehat{\mathbb{Z}_p}) \text{ and } \begin{cases} i = n & \text{if } d\sigma = 0. \\ i = n + 1 & \text{otherwise.} \end{cases} \right\rangle$$

The differential and the  $E_\infty$  structure are that induced by those on  $C^\bullet(X, \widehat{\mathbb{Z}_p})$ .

## Theorem (F.C.)

As an  $E_\infty$ -algebra,  $\Omega(X)$  is quasi-isomorphic to  $\mathcal{C}(X)$ .

# Connection with crystalline cohomology

When  $X$  is a scheme: the altered singular cochain algebra can also be interpreted as

$$\mathcal{C}(X) = \eta(C^\bullet(X, \widehat{\mathbb{Z}_p}))$$

where  $\eta$  is the Berthelot-Ogus-Deligne *décalage* functor, which is defined as the connective cover with respect to the Beilinson  $t$ -structure on filtered complexes with respect to the  $p$ -adic filtration. The rectifiability of this algebra recovers a result of Bhatt-Lurie-Mathew.

# Massey products and $\Omega(X)$

The model can be used to compute Massey products.

## Proposition (F.C.)

Suppose that  $\sigma \in H^\bullet(X, \mathbb{Q})$  be the higher Massey product of  $\langle x_1, x_2, \dots, x_n \rangle \in H^\bullet(A_{PL}(X), \mathbb{Q})$ . Then there exists an  $n > 0$  such that  $p^n \sigma \in H^\bullet(X, \widehat{\mathbb{Z}_p})$  is the higher Massey product of  $\langle p^n x_1, p^n x_2, \dots, p^n x_n \rangle \in H^\bullet(A_{PL}(X), \widehat{\mathbb{Z}_p})$  computed in  $\Omega^\bullet(X)$ .

Similarly it can also be compute Massey products in the torsion part of the cohomology.

# Formality of $\Omega(X)$

Finally, we have this theorem which is inspired by Mandell's conjecture.

## Theorem (F.C.)

*Let  $X$  be a finite simplicial set such that  $A_{PL}(X)$  is formal over  $\mathbb{Q}$ . For all but finitely many primes,  $\Omega^\bullet(X)$  is formal over  $\widehat{\mathbb{Z}_p}$  as a dg-commutative algebra.*

# Towards a proof of Mandell's conjecture

I propose the following proof sketch of Mandell's conjecture:

- First, observe that if  $X$  is a finite  $n$ -connected simplicial set then it admits a finite  $n$ -reduced model  $X'$  such that then  $\mathcal{E}_n(N)$  acts trivially on  $C^*(X', \mathbb{Z})$  for  $N \gg 0$  for degree reasons.
- Invert all primes  $p < N$ .
- Conjecture: As an  $E_n$ -algebra,  $C^*(X', \mathbb{Z}_{(p)})$  is weakly equivalent to  $C^*(X'_{\mathbb{Q}}, \mathbb{Z}_{(p)})$ .
- Construct a functorial commutative model for  $C^*(X, \mathbb{Q})$  by piecing together commutative models for  $C^*(\Delta^m / \{\text{n-skeleton}\}, \mathbb{Z}_{(q)})$

## Further questions

- Is there a notion of localisation on the category of topological spaces that models equivalence of de Rham forms?
- Does the divided power homotopy type determine the associative homotopy type?
- Are two divided power algebras quasi-isomorphic if and only if they are quasi-isomorphic as associative algebras?
- Is there Koszul duality between restricted Lie algebras and divided powers algebras?
- Is there a formulation of the coherent vanishing theorem in terms of Hochschild cohomology and Kaledin-like classes?