Strictly commutative dg-algebras in positive characteristic

Séminaire d'Homotopie et Géométrie Algébrique Université de Toulouse

Oisín Flynn-Connolly (Université Sorbonne Paris Nord)

September 17, 2024

つひひ

 \bullet Review E_{∞} -algebras and Steenrod operations.

€⊡

 298

重

- \bullet Review E_{∞} -algebras and Steenrod operations.
- 2 Introduce and motivate strictly commutative dg-algebras in positive characteristic and their basic properties.

- \bullet Review E_{∞} -algebras and Steenrod operations.
- Introduce and motivate strictly commutative dg-algebras in positive characteristic and their basic properties.
- **3** Obstruction theory in positive characteristic. Define cotriple products, compute the primitive secondary cohomology operations for strictly commutative dg-algebras for and formulate the coherent vanishing of higher Steenrod operations. (Reference: ArXiv: 2404.16681)

- \bullet Review E_{∞} -algebras and Steenrod operations.
- Introduce and motivate strictly commutative dg-algebras in positive characteristic and their basic properties.
- **3** Obstruction theory in positive characteristic. Define cotriple products, compute the primitive secondary cohomology operations for strictly commutative dg-algebras for and formulate the coherent vanishing of higher Steenrod operations. (Reference: ArXiv: 2404.16681)
- **•** Introduce an explicit model for the de Rham forms over $\widehat{\mathbb{Z}_p}$. Study what information can be extracted from it. (Reference: Chapter 4 of [my thesis\)](https://flynncoo.github.io/pdfs/phd_thesis.pdf)

[Part 0: A crash-course in](#page-5-0) E_{∞} -algebras

€⊡

 299

造

dg-algebras

Definition

A (commutative) dg-algebra is a chain complex (A, d) equipped with a binary (graded commutative) associative multiplication m : $A^p \otimes A^q \rightarrow A^{p+q}$ and such that d is a derivation with respect to m. Alternatively it is an algebra over the operad Assoc (or Com) in dg-modules.

Example

Let X be a topological space. Then the cohomology ring $(H^{\bullet}(X,R),0)$ equipped with the cup product forms a commutative dg-algebra.

Problem: the cohomology is not a complete invariant of homotopy type.

Example

Let X be a topological space or simplicial set. Then the singular cochains $(C^{\bullet}(X,R), d)$ equipped with the cochain level cup product forms a dg-algebra that is generally not graded commut[ativ](#page-5-0)[e.](#page-7-0)

Séminaire d'Homotopie et Géométrie AlgébricStrictly commutative dg-algebras in positive characteristic Maria 20
Strictly de la Romanne Deptember 2014 de la Romanne de

Definition

An E_∞ -operad is any operadic resolution $\mathcal{E} \xrightarrow{\sim}$ Com such that the \mathbb{S}_k action on $\mathcal E$ is free.

The singular cochain complex $C^\bullet(\overline{X},\overline{R})$ is an E_∞ -algebra. This is a complete homotopy invariant.

Theorem (Mandell, 2003)

Two finite type nilpotent spaces X and Y are weakly equivalent and only if their E_{∞} -algebras of singular cochains with integral coefficients are quasi-isomorphic as E_{∞} -algebras.

 200

Definition

The Barratt-Eccles operad $\mathcal E$ is an operad in simplicial sets given in each arity are of the form

$$
\mathcal{E}(r)_n = \{ (w_0, \ldots, w_n) \in \mathbb{S}_r \times \cdots \times \mathbb{S}_r \}
$$

equipped with face and degeneracy maps

$$
d_i(w_0,\ldots,w_n)=(w_0,\ldots,w_{i-1},\hat{w}_i,w_{i+1},\ldots,w_n)
$$

$$
s_i(w_0,\ldots,w_n)=(w_0,\ldots,w_{i-1},w_i,w_i,w_{i+1},\ldots,w_n).
$$

 \mathbb{S}_r acts on $\mathcal{E}(n)$ diagonally. Finally the compositions are also defined componentwise via the explicit composition law of

$$
\gamma: \mathbb{S}(r) \times \mathbb{S}(n_1) \times \cdots \times \mathbb{S}(n_r) \to \mathbb{S}(n_1 + \cdots + n_r)
$$

$$
(\sigma, \sigma_1, \ldots, \sigma_r) \mapsto \sigma_{n_1 \cdots n_r} \circ (\sigma_1 \times \cdots \times \sigma_r)
$$

Steenrod operations

Let P be an operad and let V be a dg-module. Recall that the free P -algebra on V is

$$
\mathcal{P}(V) = \bigoplus_{i=1}^{\infty} \mathcal{P}(i) \otimes^{\mathbb{S}_i} V^{\otimes i}
$$

 \leftarrow

 298

∍

Steenrod operations

Let $\mathcal P$ be an operad and let V be a dg-module. Recall that the free P -algebra on V is

$$
\mathcal{P}(V) = \bigoplus_{i=1}^{\infty} \mathcal{P}(i) \otimes^{\mathbb{S}_i} V^{\otimes i}
$$

When working in finite characteristic, the cohomology of the free E_{∞} -algebra is not the symmetric algebra. Instead one has

$$
H^{\bullet} \mathcal{E}(V) = \mathcal{A}(H^{\bullet}(V))
$$

Here $\mathcal A$ is the (unstable) Steenrod algebra which contains Sym $(H^{\bullet}(V))$

Steenrod operations

Let $\mathcal P$ be an operad and let V be a dg-module. Recall that the free P -algebra on V is

$$
\mathcal{P}(V) = \bigoplus_{i=1}^{\infty} \mathcal{P}(i) \otimes^{\mathbb{S}_i} V^{\otimes i}
$$

When working in finite characteristic, the cohomology of the free E_{∞} -algebra is not the symmetric algebra. Instead one has

$$
H^{\bullet} \mathcal{E}(V) = \mathcal{A}(H^{\bullet}(V))
$$

Here $\mathcal A$ is the (unstable) Steenrod algebra which contains Sym $(H^{\bullet}(V))$ but also extra elements like Sq $\mathsf{q}^n(\nu)$. One has a map

$$
\mathcal{A}(H^\bullet(V)) \xrightarrow{H^\bullet(\gamma)} H^\bullet(V)
$$

This means that the cohomology of an E_{∞} -algebra is commutative but also acted on by these extra elements in the Ste[en](#page-10-0)r[od](#page-12-0) [a](#page-9-0)[l](#page-11-0)[ge](#page-12-0)[b](#page-4-0)[r](#page-5-0)[a](#page-11-0)[.](#page-12-0)

[Part 1: Strictly commutative dg-algebras](#page-12-0)

 298

э

The geometric motivation The starting observation of rational homotopy theory is that, in zero characteristic, every E_{∞} -algebra is weakly equivalent to a commutative dg-algebra. This viewpoint allows us to "completely" understand spaces rationally.

A natural question: when does an E_{∞} -algebra admit a commutative model over \mathbb{F}_p or $\widehat{\mathbb{Z}_p}$?

The geometric motivation The starting observation of rational homotopy theory is that, in zero characteristic, every E_{∞} -algebra is weakly equivalent to a commutative dg-algebra. This viewpoint allows us to "completely" understand spaces rationally.

- A natural question: when does an E_{∞} -algebra admit a commutative model over \mathbb{F}_p or \mathbb{Z}_p ?
- In situations where you cannot give such a model, what is the best model that you can give? What information can we extract from it?

The algebraic motivation Studying E_{∞} -algebras is hard. There are still being papers written on the primary Steenrod operations and the secondary Steenrod operations are incredibly complicated. Studying commutative dg-algebras gives us insight into this difficult structure in a baby case.

[Fresse, Cartan] In positive characteristic, there are three ways to form the free commutative (or P) algebra on a dg-module A.

[Fresse, Cartan] In positive characteristic, there are three ways to form the free commutative (or P) algebra on a dg-module A.

Firstly, one can take coinvariants: $\mathcal{P}(A)=\bigoplus_{k=1}^{\infty}(\mathcal{P}(k)\otimes A^{\otimes k})_{\mathbb{S}_{k}}.$ Algebras over this monad are dg-modules A equipped with a binary multiplication $m: A^{\bullet} \otimes A^{\bullet} \to A^{\bullet}$.

つへへ

[Fresse, Cartan] In positive characteristic, there are three ways to form the free commutative (or P) algebra on a dg-module A.

- Firstly, one can take coinvariants: $\mathcal{P}(A)=\bigoplus_{k=1}^{\infty}(\mathcal{P}(k)\otimes A^{\otimes k})_{\mathbb{S}_{k}}.$ Algebras over this monad are dg-modules A equipped with a binary multiplication $m: A^{\bullet} \otimes A^{\bullet} \to A^{\bullet}$.
- Secondly, one can take invariants $\mathsf{F}\mathcal{P}(A)=\bigoplus_{k=1}^{\infty}(\mathcal{P}(k)\otimes A^{\otimes k})^{\mathbb{S}_{k}}.$ Algebras over this monad are divided power algebras: dg-modules A equipped with a binary multiplication $m:A^{\bullet}\otimes A^{\bullet}\rightarrow A^{\bullet}$ and extra operations γ_k which behave like $\frac{x^k}{k!}$ $\frac{x^k}{k!}$. Over \mathbb{F}_p , this implies that $x^p = 0$.

つへへ

[Fresse, Cartan] In positive characteristic, there are three ways to form the free commutative (or P) algebra on a dg-module A.

- Firstly, one can take coinvariants: $\mathcal{P}(A)=\bigoplus_{k=1}^{\infty}(\mathcal{P}(k)\otimes A^{\otimes k})_{\mathbb{S}_{k}}.$ Algebras over this monad are dg-modules A equipped with a binary multiplication $m: A^{\bullet} \otimes A^{\bullet} \to A^{\bullet}$.
- Secondly, one can take invariants $\mathsf{F}\mathcal{P}(A)=\bigoplus_{k=1}^{\infty}(\mathcal{P}(k)\otimes A^{\otimes k})^{\mathbb{S}_{k}}.$ Algebras over this monad are divided power algebras: dg-modules A equipped with a binary multiplication $m:A^{\bullet}\otimes A^{\bullet}\rightarrow A^{\bullet}$ and extra operations γ_k which behave like $\frac{x^k}{k!}$ $\frac{x^k}{k!}$. Over \mathbb{F}_p , this implies that $x^p = 0$.
- Finally one has a monad $P(A) \to \Lambda P(A) \to \Gamma P(A)$ given by the image of the norm map.

[Fresse, Cartan] In positive characteristic, there are three ways to form the free commutative (or P) algebra on a dg-module A.

- Firstly, one can take coinvariants: $\mathcal{P}(A)=\bigoplus_{k=1}^{\infty}(\mathcal{P}(k)\otimes A^{\otimes k})_{\mathbb{S}_{k}}.$ Algebras over this monad are dg-modules A equipped with a binary multiplication $m: A^{\bullet} \otimes A^{\bullet} \to A^{\bullet}$.
- Secondly, one can take invariants $\mathsf{F}\mathcal{P}(A)=\bigoplus_{k=1}^{\infty}(\mathcal{P}(k)\otimes A^{\otimes k})^{\mathbb{S}_{k}}.$ Algebras over this monad are divided power algebras: dg-modules A equipped with a binary multiplication $m:A^{\bullet}\otimes A^{\bullet}\rightarrow A^{\bullet}$ and extra operations γ_k which behave like $\frac{x^k}{k!}$ $\frac{x^k}{k!}$. Over \mathbb{F}_p , this implies that $x^p = 0$.
- Finally one has a monad $\mathcal{P}(A) \to \Lambda \mathcal{P}(A) \to \Gamma \mathcal{P}(A)$ given by the image of the norm map.

When we are working over a field of characteristic 0 (the classical theory of Loday-Vallette) or the action of \mathbb{S}_k on $\mathcal{P}(k)$ is free (theory of quasi-planar operads of Le Grignou-Roca Lucio), invariants coincide with coinvariants and the three notions above coincide (subject to certain finiteness assumptions). Ω

Let P be a cofibrant (or S-split) operad over a commutative ring R . Then the category of P-algebras over R is a closed model category with quasi-isomorphisms as the weak equivalences and surjective maps as fibrations.

Let $\mathcal P$ be a cofibrant (or S-split) operad over a commutative ring R. Then the category of P-algebras over R is a closed model category with quasi-isomorphisms as the weak equivalences and surjective maps as fibrations.

The Barratt-Eccles operad is S-split. So E_{∞} -algebras have a nice homotopy theory.

Let P be a cofibrant (or S-split) operad over a commutative ring R . Then the category of P-algebras over R is a closed model category with quasi-isomorphisms as the weak equivalences and surjective maps as fibrations.

The Barratt-Eccles operad is S-split. So E_{∞} -algebras have a nice homotopy theory.

Unfortunately the commutative operad is not S-split. In fact, the category of commutative algebras cannot be equipped with a model structure in a nice way because the functor Sym is not homotopy invariant.

Let P be a cofibrant (or S-split) operad over a commutative ring R . Then the category of P-algebras over R is a closed model category with quasi-isomorphisms as the weak equivalences and surjective maps as fibrations.

The Barratt-Eccles operad is S-split. So E_{∞} -algebras have a nice homotopy theory.

Unfortunately the commutative operad is not S-split. In fact, the category of commutative algebras cannot be equipped with a model structure in a nice way because the functor Sym is not homotopy invariant.

Example

Consider $M = \mathbb{F}_p[x \to dx]$. One has $H^{\bullet}(\text{Sym}(M)) \neq 0$ because 1) x^{p^n} is a cocycle 2) $x^{p^n-1}dx$ is not closed.

4 同下

[Part 2: Obstruction theory over](#page-24-0) \mathbb{F}_p

←□

 298

重

When is a commutative algebra over $\mathbb Q$ weakly equivalent to its cohomology?

When is a commutative algebra over $\mathbb Q$ weakly equivalent to its cohomology?

Answer: The obstructions to formality are given by Massey products.

When is a commutative algebra over $\mathbb Q$ weakly equivalent to its cohomology?

Answer: The obstructions to formality are given by Massey products.

Definition

Let A be a dg-algebra. Let $a, b, c \in H^{\bullet}(A)$ by such that $ab = 0$ and $bc = 0$. Let x, y, z be cocycles representing a, b, c and suppose $du = xy$ and $dv = yz$. Then $uz - xv$ is a cocycle that we call the (primitive, secondary) Massey product, it represents a well-defined class of

$$
\frac{H^{|a|+|b|+|c|-1}(A)}{aH^{|b|+|c|-1}(A)+H^{|a|+|b|-1}(A)c}
$$

When is a commutative algebra over $\mathbb Q$ weakly equivalent to its cohomology?

Answer: The obstructions to formality are given by Massey products.

Definition

Let A be a dg-algebra. Let $a, b, c \in H^{\bullet}(A)$ by such that $ab = 0$ and $bc = 0$. Let x, y, z be cocycles representing a, b, c and suppose $du = xy$ and $dv = yz$. Then $uz - xv$ is a cocycle that we call the (primitive, secondary) Massey product, it represents a well-defined class of

$$
\frac{H^{|a|+|b|+|c|-1}(A)}{aH^{|b|+|c|-1}(A)+H^{|a|+|b|-1}(A)c}
$$

Proposition (Massey, 1958)

If for some $a, b, c \in H^{\bullet}(A)$, the class above is nonzero, then A is not formal

(ロ) (_何) (ヨ) (ヨ

 QQ

Higher Massey products

• The (primitive) Massey product we gave is a cocycle because A satisfies the associative relation. (Massey, 1958)

Higher Massey products

- The (primitive) Massey product we gave is a cocycle because A satisfies the associative relation. (Massey, 1958)
- There are higher order primitive Massey products, defined whenever lower Massey products vanish. These correspond to higher syzgies of the associative relation (relations between relations). (Massey, 1958)

Higher Massey products

- The (primitive) Massey product we gave is a cocycle because A satisfies the associative relation. (Massey, 1958)
- There are higher order primitive Massey products, defined whenever lower Massey products vanish. These correspond to higher syzgies of the associative relation (relations between relations). (Massey, 1958)
- There are also matric Massey products which correspond to more complicated relations in the cohomology algebra. (May, 1968)

- The (primitive) Massey product we gave is a cocycle because A satisfies the associative relation. (Massey, 1958)
- There are higher order primitive Massey products, defined whenever lower Massey products vanish. These correspond to higher syzgies of the associative relation (relations between relations). (Massey, 1958)
- There are also matric Massey products which correspond to more complicated relations in the cohomology algebra. (May, 1968)
- (Important) These can be packaged together as the differentials in the *Eilenberg-Moore spectral sequence* which computes $\operatorname{\sf Tor}^{\mathcal{A}}({\rm \mathbb{K}},{\rm \mathbb{K}})$ from $\mathsf{Tor}^{H(A)}(\Bbbk,\Bbbk).$

- The (primitive) Massey product we gave is a cocycle because A satisfies the associative relation. (Massey, 1958)
- There are higher order primitive Massey products, defined whenever lower Massey products vanish. These correspond to higher syzgies of the associative relation (relations between relations). (Massey, 1958)
- There are also matric Massey products which correspond to more complicated relations in the cohomology algebra. (May, 1968)
- (Important) These can be packaged together as the differentials in the *Eilenberg-Moore spectral sequence* which computes $\operatorname{\sf Tor}^{\mathcal{A}}({\rm \mathbb{K}},{\rm \mathbb{K}})$ from $\mathsf{Tor}^{H(A)}(\Bbbk,\Bbbk).$
- More recently, this machinery for primitive Massey products has been extended to general quadratic operads. (Muro /FC.-Moreno-Fernandez)

Unfortunately, it is not enough for Eilenberg-Moore spectral sequence to collapse on E_2 -page, in other words, for all Massey products to vanish. Formality turns out to be equivalent to all of these vanishing in a *coherent* way.

Unfortunately, it is not enough for Eilenberg-Moore spectral sequence to collapse on E_2 -page, in other words, for all Massey products to vanish. Formality turns out to be equivalent to all of these vanishing in a *coherent* way.

Theorem (Deligne, Griffiths, Morgan, Sullivan, 1975)

Let A be a commutative dg-algebra in Q-vector spaces. Let $\mathfrak{m}=(\operatorname{\mathsf{Sym}}(\bigoplus_{i=0}^\infty V_i),d)$ be the minimal model for A. Then A is formal if and only if, there is in each V_i a complement B_i to the cocycles Z_i , $V_i = Z_i \oplus B_i$, such that any closed form, a, in the ideal, $I(\bigoplus_{i=0}^{\infty} B_i)$, is exact.

Definition

Let P be an operad over a field and A is a P -algebra. A *Sullivan model* for A is a semi-free algebra $f: (\mathcal{P}(\bigoplus_{i=0}^{\infty}V_i),d) \stackrel{\sim}{\to} A$ such that

- the map $f|_{V_0}:V_0\to A$ is a weak equivalence of dg-vector spaces. In particular $V_0 = H^{\bullet}(A)$.
- the differential satisfies $d(V_k) \subseteq (\mathcal{P}(\bigoplus_{i=0}^{k-1} V_i),d).$
- We require that $\mathit{V}_k \oplus (\mathcal{P}(\bigoplus_{i=0}^{k-1} V_i) \to A$ is a weak equivalence for each k.

The intuition is that a Sullivan model captures the idea of building a quasi-free resolution in stages, starting with a map $H \rightarrow A$ and progressively killing cocycles.

 QQQ

We use truncated Sullivan algebras to define cotriple products in this context.

Definition

A N-step Sullivan model for A is a semi-free algebra $f:({\mathcal P}(\bigoplus_{i=0}^N V_i),d)\to A$ such that

the differential satisfies $d(V_k) \subseteq (\mathcal{P}(\bigoplus_{i=0}^{k-1}V_i),d)$

We require that $\mathit{V}_k \oplus (\mathcal{P}(\bigoplus_{i=0}^{k-1} V_i) \to A$ is a weak equivalence for each k.

Let $I(\mathcal{P}(\bigoplus_{i=1}^{N}V_i),d))$ be the ideal generated by $\mathcal{P}(\bigoplus_{i=1}^{k-1}V_i),d)$. We call nonzero $\sigma \in H^\bullet(I(\mathcal{P}(\bigoplus_{i=1}^{k-1}V_i),d))$ an N^{th} order cotriple product with value $H^{\bullet}(f)(\sigma)$

 QQQ

We use truncated Sullivan algebras to define cotriple products in this context.

Definition

A N-step Sullivan model for A is a semi-free algebra $f:({\mathcal P}(\bigoplus_{i=0}^N V_i),d)\to A$ such that

the differential satisfies $d(V_k) \subseteq (\mathcal{P}(\bigoplus_{i=0}^{k-1}V_i),d)$

We require that $\mathit{V}_k \oplus (\mathcal{P}(\bigoplus_{i=0}^{k-1} V_i) \to A$ is a weak equivalence for each k.

Let $I(\mathcal{P}(\bigoplus_{i=1}^{N}V_i),d))$ be the ideal generated by $\mathcal{P}(\bigoplus_{i=1}^{k-1}V_i),d)$. We call nonzero $\sigma \in H^\bullet(I(\mathcal{P}(\bigoplus_{i=1}^{k-1}V_i),d))$ an N^{th} order cotriple product with value $H^{\bullet}(f)(\sigma)$

 QQQ

Theorem

Let P be an operad that reflects homotopy equivalences. A morphism of P-algebras $f : A \rightarrow B$ preserves cotriple product sets. If furthermore f is a quasi-isomorphism, then $H^*(f)$ induces a bijection between the corresponding cotriple product sets.

つひひ

Theorem

Let P be an operad that reflects homotopy equivalences and A be a P-algebra. Take the cotriple resolution of A and consider the spectral sequence obtained from the skeletal filtration. Then cotriple products represent the differentials in this spectral sequence.

つひひ

Over \mathbb{F}_p there are more secondary operations.

Definition (F. C.)

Let A be a commutative dg-algebra over \mathbb{F}_p . Let $x, y \in H^\bullet(A)$ be such that $xy = 0$. Choose cocycles a, $b \in A$ representing x, y respectively. Then there exists $c \in A$ such that $dc = xy$. Then c^p is a cocycle which we call the type 1 secondary commutative product of x and y . This represents a well defined element of

$$
\frac{H^{p(|x|+|y|-1)}(A)}{H^{(|x|+|y|-1)}(A)^p + x^p H^{p(|y|-1)}(A) + y^p H^{p(|x|-1)}(A)}
$$

where the term $\times^p H^{p(|y|-1)}(A)+\ y^p H^{p(|x|-1)}(A)$ in the denominator accounts for the choice of representatives x and y .

Definition (F. C.)

Let p be an odd prime. Then there is a type 2 secondary commutative product defined for $x, y \in H^*(A)$ such that $xy = 0$ we choose cocycles $a, b \in A$ representing x, y respectively. Then there exists $c \in A$ such that $dc = xy$. Then $c^{p^n-1}ab$ is a cocycle which we call the *type 2 secondary* commutative product of x and y . In this case, the operation represents a well-defined element of

$$
\frac{H^{p^n(|x|+|y|-1)+|x|+|y|}(A)}{H^{(|x|+|y|-1)}(A)^{p^n-1} \cdot xy}
$$

Observe that $d(\frac{1}{n})$ $\frac{1}{p}c^p$) = c^{p-1} ab. Therefore type 2 secondary commutative products vanish on divided power algebras. Therefore this kind of operation provides an obstruction for a commutative algebra A to be weakly equivalent to a divided power algebra.

Definition

We call a cotriple product *primitive* if it arises from monomial relations in cohomology.

Proposition

All secondary primitive cotriple products on a commutative dg-algebra A over \mathbb{F}_p are linear combinations of

- classical Massey products.
- Type 1 secondary commutative operations
- Type 2 secondary commutative operations.

Cotriple products can be used to produce examples of:

- Using type 1 operations. Commutative algebras A, B over $\mathbb Z$ such that $A \otimes \mathbb{Q}$ and $B \otimes \mathbb{Q}$ are weakly equivalent, but $A \otimes \mathbb{F}_p$ and $B \otimes \mathbb{F}_p$ are not.
- Using type 2 operations. Commutative algebras which have a divided power structure on cohomology but which are not weakly equivalent to a divided power algebra.

The extra cotriple operations are preserved by maps of commutative algebras but not associative algebras. So one has:

• Commutative algebras A, B over \mathbb{F}_p , which are weakly equivalent as associative algebras but not commutative algebras.

Finally, studying the indeterminacies of third order cotriple products, one can produce examples of:

• Commutative algebras A, B over \mathbb{F}_p that are weakly equivalent as E_{∞} -algebras but not commutative algebras.

When is an E_{∞} -algebra with coefficients in \mathbb{F}_p weakly equivalent to a strictly commutative dg-algebra?

Obstructions to strict commutativity

When is an E_{∞} -algebra with coefficients in \mathbb{F}_p weakly equivalent to a strictly commutative dg-algebra?

A: There are first-order obstructions: the Steenrod operations.

Obstructions to strict commutativity

When is an E_{∞} -algebra with coefficients in \mathbb{F}_p weakly equivalent to a strictly commutative dg-algebra?

A: There are first-order obstructions: the Steenrod operations.

Proposition (Mandell, 2009)

The E_{∞} -algebra $C^{\bullet}(X, \mathbb{F}_p)$ is rectifiable iff X is the disjoint union of contractible spaces.

つへへ

When is an E_{∞} -algebra with coefficients in \mathbb{F}_p weakly equivalent to a strictly commutative dg-algebra?

A: There are first-order obstructions: the Steenrod operations.

Proposition (Mandell, 2009)

The E_{∞} -algebra $C^{\bullet}(X, \mathbb{F}_p)$ is rectifiable iff X is the disjoint union of contractible spaces.

There are less obvious obstructions given by secondary operations.

Conjecture (Mandell, 2009)

Let X be a finite n-connected simplicial set. Then, after inverting finitely many primes $C^{\bullet}(X, \mathbb{Z})$ has a commutative model as an E_n -algebra. If X is formal, then, after possibly inverting more primes, this commutative model is formal.

Definition

Let A be an E_{∞} -algebra over \mathbb{F}_{p} . Then the higher Steenrod operations *vanish coherently* if for every (or any) Sullivan resolution $(\mathcal{E}(\bigoplus_{i=0}^{\infty}V_i),d)$ for A , there exists a splitting $\mathit{V}_i = X_i \bigoplus Y_i,$ with $X_0 = V_0;$ such that $(\mathsf{Sym}(\bigoplus_{i=0}^{\infty} X_i),d)$ is a Sullivan algebra and the kernel of

$$
(\mathcal{E}(\bigoplus_{i=0}^{\infty} V_i),d) \to (\textsf{Sym}(\bigoplus_{i=0}^{\infty} X_i),d)
$$

is acyclic.

つへへ

Theorem (FC)

Let A be an E_{∞} -algebra over \mathbb{F}_{p} . Then A is rectifiable if and only if its higher Steenrod operations vanish coherently.

Similar result for formality.

Séminaire d'Homotopie et Géométrie AlgébricStrictly commutative dg-algebras in positive characte de September 17, 2024 28 / 37

 298

重

Motivation: we want to find a best commutative approximation to the E_{∞} algebra $C^{\bullet}(X, \widehat{\mathbb{Z}_p})$.

Motivation: we want to find a best commutative approximation to the E_{∞} algebra $C^{\bullet}(X, \widehat{\mathbb{Z}}_p)$. Key idea: We want to imitate Sullivan's approach to rational homotopy theory.

Theorem (Sullivan, 1978)

Suppose one has a functor $A_{PL} : \triangle^{\bullet} \to \mathsf{CDGA}_{\mathbb{O}}$ that satisfies the Poincaré Lemma: $H^0(\triangle^n,{\mathbb Q})={\mathbb Q}$ and $H^i(\triangle^n,{\mathbb Q})=0$ for $i>0;$ and which is extendable $\pi_k(A^k_{PL}(\triangle^\bullet))=0$ for all $k\geq 0.$ Then the left Kan extension along $\triangle^{\bullet} \to$ Set \wedge

 $A_{PI}:$ Set $\land \rightarrow$ CDGA $_{\odot}$

is such that there is a zig-zag of E_{∞} -algebras

$$
A_{PL}^{\bullet}(X) \xrightarrow{\sim} (A_{PL} \otimes C)^{\bullet}(X) \xleftarrow{\sim} C^{\bullet}(X, \mathbb{Q})
$$

Definition

The simplicial cochain coalgebra Ω_{\bullet}^{*} has for *n*-simplices

$$
\Omega_n^* = \frac{\widehat{\mathbb{Z}_p}(x_0,\ldots x_n) \otimes \Lambda(dx_0,\ldots, dx_n)}{(x_0+\cdots+x_n-p, dx_0+\cdots dx_n)}, \ \ |x_i|=0, \ \ |dx_i|=1.
$$

Séminaire d'Homotopie et Géométrie AlgébricStrictly commutative dg-algebras in positive characte de September 17, 2024 30 / 37

 \leftarrow

 299

Þ

Definition

The simplicial cochain coalgebra Ω_{\bullet}^{*} has for *n*-simplices

$$
\Omega_n^* = \frac{\widehat{\mathbb{Z}_p}(x_0,\ldots x_n) \otimes \Lambda(dx_0,\ldots, dx_n)}{(x_0+\cdots+x_n-p, dx_0+\cdots dx_n)}, \ \ |x_i|=0, \ \ |dx_i|=1.
$$

The differential $d: \Omega_n^* \to \Omega_n^{*+1}$ is determined by the formula

$$
d(f) = \sum_{i=0}^{n} \frac{\partial f}{\partial x_i} dx_i
$$

for $f \in \Gamma_p(x_0, \ldots, x_n)/(x_0 + \cdots + x_n - p)$ and then extended by the Leibniz rul

←□

 299

Definition

The simplicial cochain coalgebra Ω_{\bullet}^{*} has for *n*-simplices

$$
\Omega_n^* = \frac{\widehat{\mathbb{Z}_p}(x_0,\ldots x_n) \otimes \Lambda(dx_0,\ldots, dx_n)}{(x_0+\cdots+x_n-p, dx_0+\cdots dx_n)}, \ \ |x_i|=0, \ \ |dx_i|=1.
$$

The differential $d: \Omega_n^* \to \Omega_n^{*+1}$ is determined by the formula

$$
d(f) = \sum_{i=0}^{n} \frac{\partial f}{\partial x_i} dx_i
$$

for $f \in \Gamma_p(x_0, \ldots, x_n)/(x_0 + \cdots + x_n - p)$ and then extended by the Leibniz rul . The simplicial structure is defined as follows

$$
d_i^n : \Omega_n^* \to \Omega_{n+1}^* : x_k \mapsto \begin{cases} x_k & \text{for } k < i. \\ 0 & \text{for } k = i. \\ x_{k-1} & \text{for } k > i. \end{cases}
$$

and

$$
\mathsf{s}_i^n:\Omega_n^*\to\Omega_{n-1}^* : \mathsf{x}_k\mapsto \begin{cases} \mathsf{x}_k &\text{for } k< i.\\ \mathsf{x}_k+\mathsf{x}_{k+1} &\text{for } k=i.\\ \mathsf{x}_{k+1} &\text{for } k>i. \end{cases}
$$

€⊡

 290

Séminaire d'Homotopie et Géométrie AlgébricStrictly commutative dg-algebras in positive characteristic Maris N
Strictly de Sorbonne Paris Nord-Engels Nord-Engels Nord-Republik September 2013 / 37

The cohomology of de Rham forms

Cartan considered a similar construction except over $\mathbb{Z}\langle t \rangle$. The functor

$$
\Omega: \triangle^\bullet \to \mathsf{CDGA}_{\widehat{\mathbb{Z}_p}}
$$

satisfies the Poincaré Lemma but is not extendable.

The cohomology of de Rham forms

Cartan considered a similar construction except over $\mathbb{Z}\langle t \rangle$. The functor

$$
\Omega:\triangle^\bullet\to\mathsf{CDGA}_{\widehat{\mathbb{Z}_p}}
$$

satisfies the Poincaré Lemma but is not extendable. However, it is almost extendable and one can suitably modify Sullivan's proof to produce the following.

Theorem (Cartan, F.C)

Consider the left Kan extension along $\triangle^{\bullet} \to$ Set \wedge

$$
\Omega:\mathsf{Set}_\triangle\to\mathsf{CDGA}_{\widehat{\mathbb{Z}_p}}
$$

Then there is an isomorphism of cohomology algebras

$$
H^{\bullet}(X,\widehat{\mathbb{Z}_p})=H^{\bullet}(\Omega(X)).
$$

 \leftarrow \leftarrow \leftarrow

э

The homotopy type of the de Rham forms

What about the E_{∞} -homotopy type?

Definition

Let X be a simplicial set. We define the *altered singular cochain algebra* $\mathcal{C}^\bullet(X)$ to be the following subalgebra of the singular cochains $\mathcal{C}^\bullet(X)$.

$$
\mathcal{C}^n(X) = \left\langle p^i \sigma : \text{ for } \sigma \in \mathcal{C}^n(X, \widehat{\mathbb{Z}_p}) \text{ and } \begin{cases} i = n & \text{if } d\sigma = 0. \\ i = n+1 & \text{otherwise.} \end{cases} \right\rangle
$$

The differential and the E_{∞} structure are that induced by those on $C^{\bullet}(X,\widehat{\mathbb{Z}_p}).$

つへへ

The homotopy type of the de Rham forms

What about the E_{∞} -homotopy type?

Definition

Let X be a simplicial set. We define the *altered singular cochain algebra* $\mathcal{C}^\bullet(X)$ to be the following subalgebra of the singular cochains $\mathcal{C}^\bullet(X)$.

$$
\mathcal{C}^n(X) = \left\langle p^i \sigma : \text{ for } \sigma \in \mathcal{C}^n(X, \widehat{\mathbb{Z}_p}) \text{ and } \begin{cases} i = n & \text{if } d\sigma = 0. \\ i = n+1 & \text{otherwise.} \end{cases} \right\rangle
$$

The differential and the E_{∞} structure are that induced by those on $C^{\bullet}(X,\widehat{\mathbb{Z}_p}).$

Theorem (F.C.)

As an E_{∞} -algebra, $\Omega(X)$ is quasi-isomorphic to $\mathcal{C}(X)$.

When X is a scheme: the altered singular cochain algebra can also be interpreted as

$$
\mathcal{C}(X)=\eta(C^{\bullet}(X,\widehat{\mathbb{Z}_{p}}))
$$

where η is the Berthelot-Ogus-Deligne *décalage* functor, which is defined as the connective cover with respect to the Beilinson t-structure on filtered complexes with repect to the p -adic filtration. The rectifiability of this algebra recovers a result of Bhatt-Lurie-Mathew.

The model can be used to compute Massey products.

Proposition (F.C.)

Suppose that $\sigma \in H^{\bullet}(X,{\mathbb{Q}})$ be the higher Massey product of $\langle x_1, x_2, \ldots, x_n \rangle \in H^\bullet(A_{PL}(X),\mathbb{Q}).$ Then there exists an $n > 0$ such that $p^n\sigma\in H^\bullet(X,\widehat{\mathbb{Z}_p})$ is the higher Massey product of $\langle p^{n}x_1, p^{n}x_2, \ldots, p^{n}x_n \rangle \in H^{\bullet}(A_{PL}(X), \widehat{\mathbb{Z}_p})$ computed in $\Omega^{\bullet}(X)$.

Similarly it can also be compute Massey products in the torsion part of the cohomology.

Finally, we have this theorem which is inspired by Mandell's conjecture.

Theorem (F.C.)

Let X be a finite simplicial set such that $A_{PL}(X)$ is formal over Q. For all but finitely many primes, $\Omega^{\bullet}(X)$ is formal over $\widehat{\mathbb{Z}}_{\rho}$ as a dg-commutative algebra.

I propose the following proof sketch of Mandell's conjecture:

- First, observe that if X is a finite *n*-connected simplicial set then it admits a finite *n*-reduced model X' such that then $\mathcal{E}_n(N)$ acts trivially on $C^*(X', \mathbb{Z})$ for $N >> 0$ for degree reasons.
- Invert all primes $p < N$.
- Conjecture: As an E_n -algebra, $C^*(X',\mathbb{Z}_{(p)})$ is weakly equivalent to $C^*(X'_{\mathbb{Q}}, \mathbb{Z}_{(p)}).$
- Construct a functorial commutative model for $C^*(X, \mathbb{Q})$ by piecing together commutative models for $\mathsf{C}^* (\triangle^m/\{\mathsf{n}\text{-skeleton}\}, \mathbb{Z}_{(q)})$

つへへ

- • Is there a notion of localisation on the category of topological spaces that models equivalence of de Rham forms?
- Does the divided power homotopy type determine the associative homotopy type?
- Are two divided power algebras quasi-isomorphic if and only of they are quasi-isomorphic as associaive algebras?
- Is there Koszul duality between restricted Lie algebras and divided powers algebras?
- Is there a formulation of the coherent vanishing theorem in terms of Hochschild cohomology and Kaledin-like classes?